Chen Guanghui, Huynh Devan, Felgner Philip L, Guan Zhibin
Department of Chemistry, 516 Rowland Hall, University of California, Irvine, 92697-2025, USA.
J Am Chem Soc. 2006 Apr 5;128(13):4298-302. doi: 10.1021/ja0573864.
A tandem polymerization methodology, chain walking polymerization (CWP) followed by atom transfer radical polymerization, was developed for efficient synthesis of nanoparticles for bioconjugation. Using the chain walking palladium-alpha-diimine catalyst (catalyst 1), dendritic polymers bearing multiple initiation sites were synthesized and used as macroinitiators for subsequent Cu(I)-mediated ATRP. Control of molecular weight and size of the water-soluble core-shell polymeric nanoparticles was achieved by tuning reaction conditions. Addition of an N-acryloyloxysuccinamide (NAS) monomer at the end of the ATRP afforded NHS-activated polymer nanoparticles. Conjugation with both small dye molecules and protein (ovalbumin) yielded nanoparticle conjugates with relatively high dye or protein per particle ratio. With the efficient synthesis and good biocompatibility, these nanoparticles may find many potential applications in bioconjugation.
我们开发了一种串联聚合方法,即先进行链行走聚合(CWP),然后进行原子转移自由基聚合,用于高效合成用于生物共轭的纳米粒子。使用链行走钯-α-二亚胺催化剂(催化剂1),合成了带有多个引发位点的树枝状聚合物,并将其用作后续铜(I)介导的原子转移自由基聚合(ATRP)的大分子引发剂。通过调节反应条件,可以控制水溶性核壳聚合物纳米粒子的分子量和尺寸。在原子转移自由基聚合反应结束时添加N-丙烯酰氧基琥珀酰胺(NAS)单体,可得到NHS活化的聚合物纳米粒子。与小染料分子和蛋白质(卵清蛋白)共轭后,可得到每个粒子具有相对较高染料或蛋白质比例的纳米粒子共轭物。由于合成效率高且生物相容性好,这些纳米粒子在生物共轭中可能会有许多潜在应用。