Witting Anke, Chen Lanfen, Cudaback Eiron, Straiker Alex, Walter Lisa, Rickman Barry, Möller Thomas, Brosnan Celia, Stella Nephi
Department of Pharmacology, Anesthesiology, Comparative Medicine, University of Washington, Seattle, WA 98195, USA.
Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6362-7. doi: 10.1073/pnas.0510418103. Epub 2006 Mar 29.
Focal cerebral ischemia and traumatic brain injury induce an escalating amount of cell death because of harmful mediators diffusing from the original lesion site. Evidence suggests that healthy cells surrounding these lesions attempt to protect themselves by producing endocannabinoids (eCBs) and activating cannabinoid receptors, the molecular target for marijuana-derived compounds. Indeed, activation of cannabinoid receptors reduces the production and diffusion of harmful mediators. Here, we provide evidence that an exception to this pattern is found in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. We show that cell damage induced by EAE does not lead to increase in eCBs, even though cannabinoid receptors are functional because synthetic cannabinoid agonists are known to confine EAE-induced lesions. This lack of eCB increase is likely due to IFN-gamma, which is released by primed T cells invading the CNS. We show that IFN-gamma disrupts the functionality of purinergic P2X7 receptors, a key step controlling eCB production by microglia, the main source of eCBs in brain. Accordingly, induction of EAE in P2X7-/- mice results in even lower eCB levels and more pronounced cell damage than in wild-type mice. Our data suggest that the high level of CNS IFN-gamma associated with EAE disrupts eCB-mediated neuroprotection while maintaining functional cannabinoid receptors, thus providing additional support for the use of cannabinoid-based medicine to treat multiple sclerosis.
局灶性脑缺血和创伤性脑损伤会导致细胞死亡数量不断增加,这是因为有害介质从原始损伤部位扩散所致。有证据表明,这些损伤周围的健康细胞会试图通过产生内源性大麻素(eCBs)并激活大麻素受体来保护自身,大麻素受体是大麻衍生化合物的分子靶点。事实上,激活大麻素受体会减少有害介质的产生和扩散。在此,我们提供证据表明,在实验性自身免疫性脑脊髓炎(EAE)(一种多发性硬化症的小鼠模型)中发现了这种模式的一个例外情况。我们发现,尽管大麻素受体具有功能(因为已知合成大麻素激动剂可限制EAE诱导的损伤),但EAE诱导的细胞损伤并不会导致eCBs增加。eCBs缺乏增加可能是由于侵入中枢神经系统的致敏T细胞释放的γ干扰素(IFN-γ)所致。我们发现,IFN-γ会破坏嘌呤能P2X7受体的功能,这是控制小胶质细胞(大脑中eCBs的主要来源)产生eCBs的关键步骤。因此,与野生型小鼠相比,P2X7基因敲除小鼠诱导EAE会导致更低的eCB水平和更明显的细胞损伤。我们的数据表明,与EAE相关的中枢神经系统高水平IFN-γ会破坏eCB介导的神经保护作用,同时维持功能性大麻素受体,从而为使用基于大麻素的药物治疗多发性硬化症提供了额外支持。