Kunugiza Y, Tomita N, Taniyama Y, Tomita T, Osako M K, Tamai K, Tanabe T, Kaneda Y, Yoshikawa H, Morishita R
[1] 1Division of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan [2] 2Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan.
Gene Ther. 2006 Aug;13(15):1143-52. doi: 10.1038/sj.gt.3302767. Epub 2006 Mar 30.
Although skin diseases are one of the target diseases for gene therapy, there has been no practical gene transfer method. First, we examined gene transfer efficiency of the spring-powered jet injector, Shima Jet, which was originally developed as a non-needle jet injector of insulin. Local gene expression was about 100 times higher when the luciferase plasmid was transferred by the Shima Jet than by a needle. Gene transfer of beta-galactosidase revealed gene expression in the epidermis. Based on these results, we then examined the potential of gene therapy using the Shima Jet for wound healing. An increase of cellular proliferation of the epidermis and the number of microvessels in the granulation tissue was observed after hepatocyte growth factor (HGF) gene transfer. An increase in blood flow around the wound was observed after prostacyclin synthase (PGIS) gene transfer. Moreover, promotion on wound healing was observed in HGF gene transferred group, and further promotion was observed in combined gene transferred group as assessed by measuring wound area. These results indicate that co-transfer of HGF and PGIS genes by the Shima Jet could be an effective strategy to wound healing.