Suppr超能文献

DNA损伤处碱基堆积不佳可能引发多种修复蛋白的识别。

Poor base stacking at DNA lesions may initiate recognition by many repair proteins.

作者信息

Yang Wei

机构信息

Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

DNA Repair (Amst). 2006 Jun 10;5(6):654-66. doi: 10.1016/j.dnarep.2006.02.004. Epub 2006 Mar 29.

Abstract

A fundamental question in DNA repair is how a mismatched or modified base is detected when embedded in millions to billions of normal base pairs. A survey of the literature and structural database reveals a common feature in all repair protein-DNA complexes: the DNA double helix is discontinuous at a lesion site due to base unstacking, kinking and/or nucleotide extrusion. Lesions induce destabilization and distortion of short linear DNAs, and underwinding in negatively supercoiled DNA presumably could compound the reduced stability caused by a lesion. A hypothesis is thus put forward that DNA lesion recognition occurs in two steps. Repair proteins initially recognize the weakened base stacking, and thus a flexible hinge at a DNA lesion. Sampling of flexible hinges rather than all DNA base pairs can reduce the task of finding a lesion by two to three orders of magnitude, from searching millions base pairs to thousands. After the initial encounter, a repair protein scrutinizes the shape, hydrogen bonding and electrostatic potentials of bases at the flexible hinge and dissociates if it is not a correct substrate. MutS, which has a broad range of substrates, actively dissociates from non-specific binding via an ATP-dependent proofreading mechanism. A single lesion may thus be sampled by BER, NER and MMR proteins until repaired. This proposition immediately suggests a mechanism for crosstalk between different repair and signaling pathways. It also raises the possibility that sampling of a lesion by one protein could facilitate loading of another by direct protein-protein or DNA mediated interactions.

摘要

DNA修复中的一个基本问题是,当一个错配或修饰的碱基嵌入数百万至数十亿个正常碱基对中时,它是如何被检测到的。对文献和结构数据库的调查揭示了所有修复蛋白-DNA复合物的一个共同特征:由于碱基解堆叠、扭结和/或核苷酸挤出,DNA双螺旋在损伤位点处是不连续的。损伤会导致短线性DNA的不稳定和扭曲,而负超螺旋DNA中的解旋可能会加剧损伤引起的稳定性降低。因此,有人提出一个假说,即DNA损伤识别分两步进行。修复蛋白最初识别弱化的碱基堆叠,也就是DNA损伤处的一个柔性铰链。对柔性铰链而非所有DNA碱基对进行采样,可以将寻找损伤的任务减少两到三个数量级,从搜索数百万个碱基对减少到数千个。在初次相遇后,修复蛋白会仔细检查柔性铰链处碱基的形状、氢键和静电势,如果不是正确的底物就会解离。具有广泛底物范围的MutS通过一种ATP依赖的校对机制从非特异性结合中主动解离。因此,单个损伤可能会被碱基切除修复(BER)、核苷酸切除修复(NER)和错配修复(MMR)蛋白采样,直到被修复。这一观点立即暗示了不同修复和信号通路之间的串扰机制。它还提出了一种可能性,即一种蛋白对损伤的采样可能通过直接的蛋白质-蛋白质或DNA介导的相互作用促进另一种蛋白的加载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验