Suppr超能文献

与簇状损伤诱导的人糖基化酶 OGG1 对 8-氧鸟嘌呤识别损伤相关的分子机制。

Molecular Mechanisms Associated with Clustered Lesion-Induced Impairment of 8-oxoG Recognition by the Human Glycosylase OGG1.

机构信息

Laboratoire de Chimie-UMR CNRS 5182, ENS de Lyon, Université de Lyon, 46 Allée d'Italie, F-69000 Lyon, France.

Laboratoire de Physique et Chimie Théoriques-UMR CNRS 7019, Faculté des Sciences et Technologies, Université de Lorraine, Boulevard des Aiguillettes, F-54506 Vandoeuvre-les-Nancy, France.

出版信息

Molecules. 2021 Oct 26;26(21):6465. doi: 10.3390/molecules26216465.

Abstract

The 8-oxo-7,8-dihydroguanine, referred to as 8-oxoG, is a highly mutagenic DNA lesion that can provoke the appearance of mismatches if it escapes the DNA Damage Response. The specific recognition of its structural signature by the hOGG1 glycosylase is the first step along the Base Excision Repair pathway, which ensures the integrity of the genome by preventing the emergence of mutations. 8-oxoG formation, structural features, and repair have been matters of extensive research; more recently, this active field of research expended to the more complicated case of 8-oxoG within clustered lesions. Indeed, the presence of a second lesion within 1 or 2 helix turns can dramatically impact the repair yields of 8-oxoG by glycosylases. In this work, we use μs-range molecular dynamics simulations and machine-learning-based postanalysis to explore the molecular mechanisms associated with the recognition of 8-oxoG by hOGG1 when embedded in a multiple-lesion site with a mismatch in 5' or 3'. We delineate the stiffening of the DNA-protein interactions upon the presence of the mismatches, and rationalize the much lower repair yields reported with a 5' mismatch by describing the perturbation of 8-oxoG structural features upon addition of an adjacent lesion.

摘要

8- 氧代 -7,8- 二氢鸟嘌呤,简称 8-oxoG,是一种高度诱变的 DNA 损伤,如果它逃脱了 DNA 损伤反应,就会引发错配。hOGG1 糖苷酶对其结构特征的特异性识别是碱基切除修复途径的第一步,该途径通过防止突变的出现来确保基因组的完整性。8-oxoG 的形成、结构特征和修复一直是广泛研究的课题;最近,这个活跃的研究领域扩展到了更复杂的簇状损伤中的 8-oxoG 情况。事实上,在 1 或 2 个螺旋转角内存在第二个损伤会极大地影响糖苷酶对 8-oxoG 的修复产率。在这项工作中,我们使用微秒范围的分子动力学模拟和基于机器学习的后分析来探索与 hOGG1 在识别嵌入有 5'或 3'错配的多损伤位点中的 8-oxoG 相关的分子机制。我们描述了在存在错配的情况下 DNA-蛋白质相互作用的僵化,并通过描述相邻损伤添加后 8-oxoG 结构特征的扰动,解释了报告的 5'错配时修复产率低得多的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e175/8587150/3f12e8b21ae4/molecules-26-06465-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验