IBM Research Division, Almaden Research Center, San Jose, CA 95120; T. J. Watson Research Laboratory, Yorktown Heights, NY 10598; Max-Planck Institut für Metallforschung, Stuttgart, D-70569 Germany; and Lawrence Livermore National Laboratory, Livermore, CA 94550.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5777-82. doi: 10.1073/pnas.062012699.
We describe the first of two large-scale atomic simulation projects on materials failure performed on the 12-teraflop ASCI (Accelerated Strategic Computing Initiative) White computer at Lawrence Livermore National Laboratory. This is a multimillion-atom simulation study of crack propagation in rapid brittle fracture where the cracks travel faster than the speed of sound. Our finding centers on a bilayer solid that behaves under large strain like an interface crack between a soft (linear) material and a stiff (nonlinear) material. We verify that the crack behavior is dominated by the local (nonlinear) wave speeds, which can be in excess of the conventional sound speeds of a solid.
我们描述了在劳伦斯利弗莫尔国家实验室的 12 万亿次 ASCI(加速战略计算倡议)白色计算机上进行的两项大规模原子模拟材料失效项目中的第一项。这是一项关于在快速脆性断裂中裂纹扩展的数百万原子模拟研究,其中裂纹的传播速度超过声速。我们的发现集中在一个双层固体上,该固体在大应变下的行为类似于软(线性)材料和硬(非线性)材料之间的界面裂纹。我们验证了裂纹行为主要由局部(非线性)波速决定,该波速可以超过固体的常规声速。