Si Hong Zong, Wang Tao, Zhang Ke Jun, Hu Zhi De, Fan Bo Tao
Department of Chemistry, Lanzhou University, 730000 Lanzhou, PR China.
Bioorg Med Chem. 2006 Jul 15;14(14):4834-41. doi: 10.1016/j.bmc.2006.03.019. Epub 2006 Mar 31.
The gene expression programming, a novel machine learning algorithm, is used to develop quantitative model as a potential screening mechanism for a series of 1,4-dihydropyridine calcium channel antagonists for the first time. The heuristic method was used to search the descriptor space and select the descriptors responsible for activity. A nonlinear, six-descriptor model based on gene expression programming with mean-square errors 0.19 was set up with a predicted correlation coefficient (R2) 0.92. This paper provides a new and effective method for drug design and screening.
基因表达式编程是一种新型机器学习算法,首次被用于开发定量模型,作为一系列1,4 - 二氢吡啶钙通道拮抗剂的潜在筛选机制。采用启发式方法搜索描述符空间并选择与活性相关的描述符。基于基因表达式编程建立了一个非线性的六描述符模型,其均方误差为0.19,预测相关系数(R2)为0.92。本文为药物设计和筛选提供了一种新的有效方法。