Suppr超能文献

SET2进行组蛋白甲基化的正常模式需要BUR1细胞周期蛋白依赖性蛋白激酶。

The BUR1 cyclin-dependent protein kinase is required for the normal pattern of histone methylation by SET2.

作者信息

Chu Yaya, Sutton Ann, Sternglanz Rolf, Prelich Gregory

机构信息

Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.

出版信息

Mol Cell Biol. 2006 Apr;26(8):3029-38. doi: 10.1128/MCB.26.8.3029-3038.2006.

Abstract

BUR1 and BUR2 encode the catalytic and regulatory subunits of a cyclin-dependent protein kinase complex that is essential for normal growth and has a general role in transcription elongation. To gain insight into its specific role in vivo, we identified mutations that reverse the severe growth defect of bur1Delta cells. This selection identified mutations in SET2, which encodes a histone methylase that targets lysine 36 of histone H3 and, like BUR1, has a poorly characterized role during transcription elongation. This genetic relationship indicates that SET2 activity is required for the growth defect observed in bur1Delta strains. This SET2-dependent growth inhibition occurs via methylation of histone H3 on lysine 36, since a methylation-defective allele of SET2 or a histone H3 K36R mutation also suppressed bur1Delta. We have explored the relationship between BUR1 and SET2 at the biochemical level and find that histone H3 is monomethylated, dimethylated, and trimethylated on lysine 36 in wild-type cells, but trimethylation is significantly reduced in bur1 and bur2 mutant strains. A similar methylation pattern is observed in RNA polymerase II C-terminal domain truncation mutants and in an spt16 mutant strain. Chromatin immunoprecipitation assays reveal that the transcription-dependent increase in trimethylated K36 over open reading frames is significantly reduced in bur2Delta strains. These results establish links between a regulatory protein kinase and histone methylation and lead to a model in which the Bur1-Bur2 complex counteracts an inhibitory effect of Set2-dependent histone methylation.

摘要

BUR1和BUR2编码一种细胞周期蛋白依赖性蛋白激酶复合物的催化亚基和调节亚基,该复合物对正常生长至关重要,并且在转录延伸中起普遍作用。为了深入了解其在体内的具体作用,我们鉴定了可逆转bur1Delta细胞严重生长缺陷的突变。该筛选鉴定出SET2中的突变,SET2编码一种组蛋白甲基化酶,其作用靶点是组蛋白H3的赖氨酸36,并且与BUR1一样,在转录延伸过程中的作用尚不明确。这种遗传关系表明,SET2活性是bur1Delta菌株中观察到的生长缺陷所必需的。这种依赖SET2的生长抑制是通过组蛋白H3赖氨酸36的甲基化发生的,因为SET2的甲基化缺陷等位基因或组蛋白H3 K36R突变也能抑制bur1Delta。我们在生化水平上探索了BUR1和SET2之间的关系,发现野生型细胞中组蛋白H3在赖氨酸36处发生单甲基化、二甲基化和三甲基化,但在bur1和bur2突变菌株中三甲基化显著减少。在RNA聚合酶II C末端结构域截短突变体和spt16突变菌株中观察到类似的甲基化模式。染色质免疫沉淀分析表明,在bur2Delta菌株中,开放阅读框上三甲基化K36的转录依赖性增加显著降低。这些结果建立了一种调节性蛋白激酶与组蛋白甲基化之间的联系,并得出一个模型,即Bur1-Bur2复合物抵消了Set2依赖性组蛋白甲基化的抑制作用。

相似文献

1
The BUR1 cyclin-dependent protein kinase is required for the normal pattern of histone methylation by SET2.
Mol Cell Biol. 2006 Apr;26(8):3029-38. doi: 10.1128/MCB.26.8.3029-3038.2006.
3
Regulation of histone H3K4 tri-methylation and PAF complex recruitment by the Ccr4-Not complex.
Nucleic Acids Res. 2007;35(7):2428-39. doi: 10.1093/nar/gkm175. Epub 2007 Mar 28.
6
Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex.
Cell. 2005 Nov 18;123(4):593-605. doi: 10.1016/j.cell.2005.10.025.
8
Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes.
EMBO J. 2007 Nov 14;26(22):4646-56. doi: 10.1038/sj.emboj.7601887. Epub 2007 Oct 18.
9
BUR1 and BUR2 encode a divergent cyclin-dependent kinase-cyclin complex important for transcription in vivo.
Mol Cell Biol. 2000 Oct;20(19):7080-7. doi: 10.1128/MCB.20.19.7080-7087.2000.

引用本文的文献

1
Inherent asymmetry of Rpd3S coordinates its nucleosome engagement and association with elongating RNA polymerase II.
Nat Struct Mol Biol. 2025 Apr;32(4):687-697. doi: 10.1038/s41594-024-01453-w. Epub 2025 Jan 8.
2
Cyclin-dependent kinases: Masters of the eukaryotic universe.
Wiley Interdiscip Rev RNA. 2023 Sep 17;15(1):e1816. doi: 10.1002/wrna.1816.
3
Insights into Spt6: a histone chaperone that functions in transcription, DNA replication, and genome stability.
Trends Genet. 2023 Nov;39(11):858-872. doi: 10.1016/j.tig.2023.06.008. Epub 2023 Jul 20.
5
The conserved histone chaperone Spt6 is strongly required for DNA replication and genome stability.
Cell Rep. 2023 Mar 28;42(3):112264. doi: 10.1016/j.celrep.2023.112264. Epub 2023 Mar 15.
6
SETD2: from chromatin modifier to multipronged regulator of the genome and beyond.
Cell Mol Life Sci. 2022 Jun 6;79(6):346. doi: 10.1007/s00018-022-04352-9.
8
The Bur1 cyclin-dependent kinase regulates telomere length in Saccharomyces cerevisiae.
Yeast. 2022 Mar;39(3):177-192. doi: 10.1002/yea.3680. Epub 2021 Dec 2.
9
Ready, SET, Go: Post-translational regulation of the histone lysine methylation network in budding yeast.
J Biol Chem. 2021 Aug;297(2):100939. doi: 10.1016/j.jbc.2021.100939. Epub 2021 Jul 3.
10
Essential histone chaperones collaborate to regulate transcription and chromatin integrity.
Genes Dev. 2021 May 1;35(9-10):698-712. doi: 10.1101/gad.348431.121. Epub 2021 Apr 22.

本文引用的文献

1
Double chromodomains cooperate to recognize the methylated histone H3 tail.
Nature. 2005 Dec 22;438(7071):1181-5. doi: 10.1038/nature04290.
2
Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation.
Mol Cell. 2005 Dec 22;20(6):971-8. doi: 10.1016/j.molcel.2005.11.021.
4
Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex.
Cell. 2005 Nov 18;123(4):593-605. doi: 10.1016/j.cell.2005.10.025.
6
Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains.
J Biol Chem. 2005 Dec 23;280(51):41789-92. doi: 10.1074/jbc.C500395200. Epub 2005 Oct 31.
7
Genome-wide map of nucleosome acetylation and methylation in yeast.
Cell. 2005 Aug 26;122(4):517-27. doi: 10.1016/j.cell.2005.06.026.
9
Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription.
Mol Cell. 2005 Jun 10;18(6):723-34. doi: 10.1016/j.molcel.2005.05.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验