Department of Biology, Emory University, Atlanta, GA 30322, USA.
Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA.
G3 (Bethesda). 2022 Jul 6;12(7). doi: 10.1093/g3journal/jkac120.
Somatic missense mutations in histone genes turn these essential proteins into oncohistones, which can drive oncogenesis. Understanding how missense mutations alter histone function is challenging in mammals as mutations occur in a single histone gene. For example, described oncohistone mutations predominantly occur in the histone H3.3 gene, despite the human genome encoding 15 H3 genes. To understand how oncogenic histone missense mutations alter histone function, we leveraged the budding yeast model, which contains only 2 H3 genes, to explore the functional consequences of oncohistones H3K36M, H3G34W, H3G34L, H3G34R, and H3G34V. Analysis of cells that express each of these variants as the sole copy of H3 reveals that H3K36 mutants show different drug sensitivities compared to H3G34 mutants. This finding suggests that changes to proximal amino acids in the H3 N-terminal tail alter distinct biological pathways. We exploited the caffeine-sensitive growth of H3K36-mutant cells to perform a high copy suppressor screen. This screen identified genes linked to histone function and transcriptional regulation, including Esa1, a histone H4/H2A acetyltransferase; Tos4, a forkhead-associated domain-containing gene expression regulator; Pho92, an N6-methyladenosine RNA-binding protein; and Sgv1/Bur1, a cyclin-dependent kinase. We show that the Esa1 lysine acetyltransferase activity is critical for suppression of the caffeine-sensitive growth of H3K36R-mutant cells while the previously characterized binding interactions of Tos4 and Pho92 are not required for suppression. This screen identifies pathways that could be altered by oncohistone mutations and highlights the value of yeast genetics to identify pathways altered by such mutations.
组蛋白基因中的体细胞错义突变使这些必需蛋白成为癌组蛋白,从而可以驱动肿瘤发生。由于突变发生在单个组蛋白基因中,因此理解错义突变如何改变组蛋白功能在哺乳动物中具有挑战性。例如,描述的癌组蛋白突变主要发生在组蛋白 H3.3 基因中,尽管人类基因组编码 15 个 H3 基因。为了了解致癌组蛋白错义突变如何改变组蛋白功能,我们利用芽殖酵母模型(仅包含 2 个 H3 基因)来探索癌组蛋白 H3K36M、H3G34W、H3G34L、H3G34R 和 H3G34V 的功能后果。分析表达这些变体作为 H3 唯一拷贝的细胞表明,与 H3G34 突变体相比,H3K36 突变体显示出不同的药物敏感性。这一发现表明,H3 N 端尾部近端氨基酸的变化改变了不同的生物学途径。我们利用 H3K36 突变细胞对咖啡因敏感的生长来进行高拷贝抑制子筛选。该筛选鉴定了与组蛋白功能和转录调控相关的基因,包括 Esa1,一种组蛋白 H4/H2A 乙酰转移酶; Tos4,一种与叉头相关结构域的基因表达调节剂;Pho92,一种 N6-甲基腺苷 RNA 结合蛋白;以及 Sgv1/Bur1,一种细胞周期蛋白依赖性激酶。我们表明,Esa1 赖氨酸乙酰转移酶活性对于抑制 H3K36R 突变体细胞对咖啡因的敏感性生长至关重要,而先前表征的 Tos4 和 Pho92 的结合相互作用对于抑制则不是必需的。该筛选确定了可能被癌组蛋白突变改变的途径,并强调了酵母遗传学在识别此类突变改变的途径方面的价值。