Solá Ricardo J, Al-Azzam Wasfi, Griebenow Kai
Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 23346, Puerto Rico 00931-3346.
Biotechnol Bioeng. 2006 Aug 20;94(6):1072-9. doi: 10.1002/bit.20933.
In this work we establish the relationship between chemical glycosylation and protein thermodynamic, kinetic, and colloidal stability. While there have been reports in the literature that chemical glycosylation modulates protein stability, mechanistic details still remain uncertain. To address this issue, we designed and coupled monofunctional activated glycans (lactose and dextran) to the model protein alpha-chymotrypsin (alpha-CT). This resulted in a series of glycoconjugates with variations in the glycan size and degree of glycosylation. Thermodynamic unfolding, thermal inactivation, and temperature-induced aggregation experiments revealed that chemical glycosylation increased protein thermodynamic (Delta G(25 degrees C)), kinetic (t(1/2)(45 degrees C)), and colloidal stability. These results highlight the potential of chemical glycosylation with monofunctional activated glycans as a technology for increasing the long-term stability of liquid protein formulations for industrial and biotherapeutic applications.
在这项工作中,我们建立了化学糖基化与蛋白质热力学、动力学及胶体稳定性之间的关系。虽然文献中已有报道称化学糖基化可调节蛋白质稳定性,但其作用机制细节仍不明确。为解决这一问题,我们设计并将单功能活化聚糖(乳糖和葡聚糖)与模型蛋白α-胰凝乳蛋白酶(α-CT)偶联。这产生了一系列聚糖大小和糖基化程度各异的糖缀合物。热力学去折叠、热失活及温度诱导聚集实验表明,化学糖基化提高了蛋白质的热力学稳定性(ΔG(25℃))、动力学稳定性(t(1/2)(45℃))及胶体稳定性。这些结果凸显了利用单功能活化聚糖进行化学糖基化作为一种提高用于工业和生物治疗应用的液体蛋白质制剂长期稳定性的技术的潜力。