Solá Ricardo J, Griebenow Kai
Laboratory for Applied Biochemistry and Biotechnology, Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931.
FEBS J. 2006 Dec;273(23):5303-19. doi: 10.1111/j.1742-4658.2006.05524.x. Epub 2006 Oct 31.
Although the chemical nature of the catalytic mechanism of the serine protease alpha-chymotrypsin (alpha-CT) is largely understood, the influence of the enzyme's structural dynamics on its catalysis remains uncertain. Here we investigate whether alpha-CT's structural dynamics directly influence the kinetics of enzyme catalysis. Chemical glycosylation [Solá RJ & Griebenow K (2006) FEBS Lett 580, 1685-1690] was used to generate a series of glycosylated alpha-CT conjugates with reduced structural dynamics, as determined from amide hydrogen/deuterium exchange kinetics (k(HX)). Determination of their catalytic behavior (K(S), k(2), and k(3)) for the hydrolysis of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide (Suc-Ala-Ala-Pro-Phe-pNA) revealed decreased kinetics for the catalytic steps (k(2) and k(3)) without affecting substrate binding (K(S)) at increasing glycosylation levels. Statistical correlation analysis between the catalytic (DeltaG( not equal)k(i)) and structurally dynamic (DeltaG(HX)) parameters determined revealed that the enzyme acylation and deacylation steps are directly influenced by the changes in protein structural dynamics. Molecular modelling of the alpha-CT glycoconjugates coupled with molecular dynamics simulations and domain motion analysis employing the Gaussian network model revealed structural insights into the relation between the protein's surface glycosylation, the resulting structural dynamic changes, and the influence of these on the enzyme's collective dynamics and catalytic residues. The experimental and theoretical results presented here not only provide fundamental insights concerning the influence of glycosylation on the protein biophysical properties but also support the hypothesis that for alpha-CT the global structural dynamics directly influence the kinetics of enzyme catalysis via mechanochemical coupling between domain motions and active site chemical groups.
尽管丝氨酸蛋白酶α-胰凝乳蛋白酶(α-CT)催化机制的化学本质已基本明确,但其结构动力学对催化作用的影响仍不确切。在此,我们研究α-CT的结构动力学是否直接影响酶催化的动力学过程。利用化学糖基化方法[索拉RJ和格里布诺夫K(2006年)《欧洲生物化学会联合会快报》580, 1685 - 1690]生成了一系列结构动力学降低的糖基化α-CT偶联物,这是根据酰胺氢/氘交换动力学(k(HX))测定的。测定它们对N - 琥珀酰 - 丙氨酰 - 丙氨酰 - 脯氨酰 - 苯丙氨酸对硝基苯胺(Suc - Ala - Ala - Pro - Phe - pNA)水解的催化行为(K(S)、k(2)和k(3))发现,随着糖基化水平的增加,催化步骤(k(2)和k(3))的动力学降低,但不影响底物结合(K(S))。对所测定的催化(ΔG(不等)k(i))和结构动力学(ΔG(HX))参数进行统计相关分析表明,酶的酰化和脱酰化步骤直接受蛋白质结构动力学变化的影响。α-CT糖缀合物的分子建模,结合分子动力学模拟和使用高斯网络模型的结构域运动分析,揭示了蛋白质表面糖基化、由此产生的结构动力学变化以及这些对酶的整体动力学和催化残基的影响之间关系的结构见解。此处呈现的实验和理论结果不仅提供了关于糖基化对蛋白质生物物理性质影响的基本见解,还支持了这样的假设:对于α-CT,整体结构动力学通过结构域运动与活性位点化学基团之间的机械化学偶联直接影响酶催化的动力学过程。