Suppr超能文献

用哈特里-福克模型计算大分子。

Computation of large molecules with the hartree-fock model.

作者信息

Clementi E

机构信息

IBM Corporation, Monterey & Cottle Roads, San Jose, California 95114.

出版信息

Proc Natl Acad Sci U S A. 1972 Oct;69(10):2942-4. doi: 10.1073/pnas.69.10.2942.

Abstract

The usual way to compute Hartree-Fock type functions for molecules is by an expansion of the one-electron functions (molecular orbitals) in a linear combination of analytical functions (LCAO-MO-SCF, linear combination of atomic orbitals-Molecular Orbital-Self Consistent field). The expansion coefficients are obtained variationally. This technique requires the computation of several multicenter two-electron integrals (representing the electron-electron interaction) proportional to the fourth power of the basis set size. There are several types of basis sets; the Gaussian type introduced by S. F. Boys is used herein. Since it requires from a minimum of 10 (or 15) Gaussian-type functions to about 25 (or 30) Gaussian functions to describe a second-row atom in a molecule, the fourth power dependency of the basis set has been the de facto bottleneck of quantum chemical computations in the last decade.In this paper, the concept is introduced of a "dynamical" basis set, which allows for drastic computational simplifications while retaining full numerical accuracy. Examples are given that show that computational saving in computer time of more than a factor of one hundred is achieved and that large basis sets (up to the order of several hundred Gaussian functions per molecule) can be used routinely.It is noted that the limitation in the Hartree-Fock energy (correlation energy error) can be easily computed by use of a statistical model introduced by Wigner for solid-state systems in 1934.Thus, large molecules can now be simulated by computational techniques without reverting to semi-empirical parameterization and without requiring enormous computational time and storage.

摘要

计算分子的哈特里-福克型函数的常用方法是通过将单电子函数(分子轨道)展开为解析函数的线性组合(LCAO-MO-SCF,原子轨道线性组合-分子轨道-自洽场)。通过变分法获得展开系数。该技术需要计算几个与基组大小的四次方成正比的多中心双电子积分(表示电子-电子相互作用)。有几种类型的基组;本文使用的是S.F.博伊斯引入的高斯型基组。由于描述分子中的第二周期原子至少需要10(或15)个高斯型函数到大约25(或30)个高斯函数,基组的四次方依赖性在过去十年中一直是量子化学计算的实际瓶颈。本文引入了“动态”基组的概念,它在保持完全数值精度的同时,允许大幅简化计算。给出的例子表明,计算机时间的计算节省超过一百倍,并且可以常规使用大基组(每个分子高达数百个高斯函数的量级)。需要注意的是,哈特里-福克能量的限制(相关能量误差)可以通过使用1934年维格纳为固态系统引入的统计模型轻松计算出来。因此,现在可以通过计算技术模拟大分子,而无需诉诸半经验参数化,也无需巨大的计算时间和存储。

相似文献

1
Computation of large molecules with the hartree-fock model.用哈特里-福克模型计算大分子。
Proc Natl Acad Sci U S A. 1972 Oct;69(10):2942-4. doi: 10.1073/pnas.69.10.2942.
2
Hybrid gausslet/Gaussian basis sets.混合高斯小波/高斯基组。
J Chem Phys. 2021 Nov 14;155(18):184107. doi: 10.1063/5.0068887.
6
Efficient Computation of Exchange Energy Density with Gaussian Basis Functions.使用高斯基函数高效计算交换能密度。
J Chem Theory Comput. 2017 Jun 13;13(6):2571-2580. doi: 10.1021/acs.jctc.7b00055. Epub 2017 May 9.
8
Approximations to self-consistent field molecular wavefunctions.自洽场分子波函数的近似值。
Proc Natl Acad Sci U S A. 1972 Mar;69(3):652-6. doi: 10.1073/pnas.69.3.652.

本文引用的文献

1
BROKEN BOTTLENECKS AND THE FUTURE OF MOLECULAR QUANTUM MECHANICS.打破瓶颈与分子量子力学的未来
Proc Natl Acad Sci U S A. 1959 Mar;45(3):394-8. doi: 10.1073/pnas.45.3.394.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验