Clementi E
IBM Corporation, Monterey & Cottle Roads, San Jose, California 95114.
Proc Natl Acad Sci U S A. 1972 Oct;69(10):2942-4. doi: 10.1073/pnas.69.10.2942.
The usual way to compute Hartree-Fock type functions for molecules is by an expansion of the one-electron functions (molecular orbitals) in a linear combination of analytical functions (LCAO-MO-SCF, linear combination of atomic orbitals-Molecular Orbital-Self Consistent field). The expansion coefficients are obtained variationally. This technique requires the computation of several multicenter two-electron integrals (representing the electron-electron interaction) proportional to the fourth power of the basis set size. There are several types of basis sets; the Gaussian type introduced by S. F. Boys is used herein. Since it requires from a minimum of 10 (or 15) Gaussian-type functions to about 25 (or 30) Gaussian functions to describe a second-row atom in a molecule, the fourth power dependency of the basis set has been the de facto bottleneck of quantum chemical computations in the last decade.In this paper, the concept is introduced of a "dynamical" basis set, which allows for drastic computational simplifications while retaining full numerical accuracy. Examples are given that show that computational saving in computer time of more than a factor of one hundred is achieved and that large basis sets (up to the order of several hundred Gaussian functions per molecule) can be used routinely.It is noted that the limitation in the Hartree-Fock energy (correlation energy error) can be easily computed by use of a statistical model introduced by Wigner for solid-state systems in 1934.Thus, large molecules can now be simulated by computational techniques without reverting to semi-empirical parameterization and without requiring enormous computational time and storage.
计算分子的哈特里-福克型函数的常用方法是通过将单电子函数(分子轨道)展开为解析函数的线性组合(LCAO-MO-SCF,原子轨道线性组合-分子轨道-自洽场)。通过变分法获得展开系数。该技术需要计算几个与基组大小的四次方成正比的多中心双电子积分(表示电子-电子相互作用)。有几种类型的基组;本文使用的是S.F.博伊斯引入的高斯型基组。由于描述分子中的第二周期原子至少需要10(或15)个高斯型函数到大约25(或30)个高斯函数,基组的四次方依赖性在过去十年中一直是量子化学计算的实际瓶颈。本文引入了“动态”基组的概念,它在保持完全数值精度的同时,允许大幅简化计算。给出的例子表明,计算机时间的计算节省超过一百倍,并且可以常规使用大基组(每个分子高达数百个高斯函数的量级)。需要注意的是,哈特里-福克能量的限制(相关能量误差)可以通过使用1934年维格纳为固态系统引入的统计模型轻松计算出来。因此,现在可以通过计算技术模拟大分子,而无需诉诸半经验参数化,也无需巨大的计算时间和存储。