Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08901.
Proc Natl Acad Sci U S A. 1982 Mar;79(6):2143-4. doi: 10.1073/pnas.79.6.2143.
Harmonic maps X:(S,h) --> N from a 2-manifold S with indefinite metric h to a semi-Riemannian manifold N are characterized, assuming that the induced metric I is nondegenerate. Except in one very special case, the characterizations involve a canonically determined holomorphic quadratic differential on a naturally chosen conformal structure. This is surprising because the Euler-Lagrange equation that X must satisfy is basically the wave equation. The Gauss map of a spacelike or timelike surface in Minkowski 3-space is shown to be harmonic if and only if mean curvature is constant. Finally, it is noted that a harmonic map X:(S,h) --> N with indefinite h and nondegenerate I normally gives rise to a sine-Gordon, a sinh-Gordon, or a cosh-Gordon equation, provided that the intrinsic curvature of I is constant.
从具有不定度量 h 的 2-流形 S 到半黎曼流形 N 的调和映射 X:(S,h) --> N 被刻画,假设诱导度量 I 是非退化的。除了一种非常特殊的情况,这些特征都涉及到在自然选择的共形结构上的一个正则确定的全纯二次微分。这是令人惊讶的,因为 X 必须满足的欧拉-拉格朗日方程基本上是波动方程。证明了闵可夫斯基 3-空间中类空或类时曲面的高斯映射是调和的,当且仅当平均曲率是常数。最后,注意到具有不定 h 和非退化 I 的调和映射 X:(S,h) --> N 通常会产生正弦-戈登、双曲正弦-戈登或双曲余弦-戈登方程,前提是 I 的内在曲率是常数。