Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 1984 Jan;81(2):645-7. doi: 10.1073/pnas.81.2.645.
Until recently, the generalized Casimir operator constructed by Kac [Kac, V. G. (1974) Funct. Anal. Appl. 8, 68-70] has been the only known element of the center of a completion of the enveloping algebra of a Kac-Moody algebra. It has been conjectured [Deodhar, V. V., Gabber, O. & Kac, V. G. (1982) Adv. Math. 45, 92-116], however, that the image of the Harish-Chandra homomorphism contains all theta functions defined on the interior of the complexified Tits cone and hence separates the orbits of the Weyl group. Developing the ideas of Feigin and Fuchs [Feigin, B. L. & Fuchs, D. B. (1983) Dokl. Akad. Nauk SSSR 269, 1057-1060], I prove this conjecture. Another application of this method is the Chevalley type restriction theorem for simple finite-dimensional Lie superalgebras.
直到最近,Kac [Kac, V. G. (1974) Funct. Anal. Appl. 8, 68-70] 构造的广义 Casimir 算子一直是紧化 envelop代数的中心的唯一已知元素。然而,人们猜测 [Deodhar, V. V., Gabber, O. & Kac, V. G. (1982) Adv. Math. 45, 92-116],Harish-Chandra 同态的像包含了定义在复化 Tits 锥内部的所有 theta 函数,因此可以区分 Weyl 群的轨道。我利用 Feigin 和 Fuchs [Feigin, B. L. & Fuchs, D. B. (1983) Dokl. Akad. Nauk SSSR 269, 1057-1060] 的思想证明了这个猜想。这种方法的另一个应用是简单有限维李超代数的 Chevalley 型限制定理。