Department of Mathematics, Yale University, New Haven, CT 06520.
Proc Natl Acad Sci U S A. 1988 Dec;85(24):9373-7. doi: 10.1073/pnas.85.24.9373.
We construct vertex representations of quantum affine algebras of ADE type, which were first introduced in greater generality by Drinfeld and Jimbo. The limiting special case of our construction is the untwisted vertex representation of affine Lie algebras of Frenkel-Kac and Segal. Our representation is given by means of a new type of vertex operator corresponding to the simple roots and satisfying the defining relations. In the case of the quantum affine algebra of type A, we introduce vertex operators corresponding to all the roots and determine their commutation relations. This provides an analogue of a Chevalley basis of the affine Lie algebra unk in the basic representation.
我们构建了 ADE 型量子仿射代数的顶点表示,这些顶点表示最初是由 Drinfeld 和 Jimbo 在更广泛的意义上引入的。我们的构造的极限特殊情况是 Frenkel-Kac 和 Segal 的仿射李代数的非扭曲顶点表示。我们的表示是通过一种与简单根对应的新型顶点算子给出的,该算子满足定义关系。在 A 型量子仿射代数的情况下,我们引入了对应于所有根的顶点算子,并确定了它们的交换关系。这为基本表示中的仿射李代数unk的 Chevalley 基提供了一个类似物。