Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 1986 Mar;83(6):1543-5. doi: 10.1073/pnas.83.6.1543.
Let G be the group with Borel subgroup B, associated to a Kac-Moody Lie algebra [unk] (with Weyl group W and Cartan subalgebra [unk]). Then H()(G/B) has, among others, four distinguished structures (i) an algebra structure, (ii) a distinguished basis, given by the Schubert cells, (iii) a module for W, and (iv) a module for Hecke-type operators A(w), for w [unk] W. We construct a ring R, which we refer to as the nil Hecke ring, which is very simply and explicitly defined as a functor of W together with the W-module [unk] alone and such that all these four structures on H()(G/B) arise naturally from the ring R.
设 G 为与 Kac-Moody Lie 代数 [unk](具有 Weyl 群 W 和 Cartan 子代数 [unk])相关联的群,Borel 子群为 B。那么 H()(G/B) 除了其他结构之外,还有四个显著的结构:(i) 代数结构,(ii) 由 Schubert 细胞给出的显著基,(iii) W 的模,以及 (iv) Hecke 型算子 A(w) 的模,对于 w [unk] W。我们构造了一个环 R,我们称之为 nil-Hecke 环,它作为 W 的函子和仅 W-模 [unk] 非常简单而明确地定义,并且 H()(G/B) 上的所有这四个结构都自然地从环 R 中产生。