Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 1987 Jul;84(13):4351-4. doi: 10.1073/pnas.84.13.4351.
Let G be a Kac-Moody group with Borel subgroup B and compact maximal torus T. Analogous to Kostant and Kumar [Kostant, B. & Kumar, S. (1986) Proc. Natl. Acad. Sci. USA 83, 1543-1545], we define a certain ring Y, purely in terms of the Weyl group W (associated to G) and its action on T. By dualizing Y we get another ring Psi, which, we prove, is "canonically" isomorphic with the T-equivariant K-theory K(T)(G/B) of G/B. Now K(T)(G/B), apart from being an algebra over K(T)(pt.) approximately A(T), also has a Weyl group action and, moreover, K(T)(G/B) admits certain operators {D(w)}w[unk]W similar to the Demazure operators defined on A(T). We prove that these structures on K(T)(G/B) come naturally from the ring Y. By "evaluating" the A(T)-module Psi at 1, we recover K(G/B) together with the above-mentioned structures. We believe that many of the results of this paper are new in the finite case (i.e., G is a finite-dimensional semisimple group over C) as well.
让 G 是一个 Kac-Moody 群,具有 Borel 子群 B 和紧极大单群 T。类似于 Kostant 和 Kumar [Kostant, B. & Kumar, S. (1986) Proc. Natl. Acad. Sci. USA 83, 1543-1545],我们仅根据 Weyl 群 W(与 G 相关联)及其在 T 上的作用定义了一个特定的环 Y。通过对偶化 Y,我们得到了另一个环 Psi,我们证明了 Psi 与 G/B 的 T-等变 K-理论 K(T)(G/B)“正则同构”。现在,K(T)(G/B)除了是 K(T)(pt.)的代数约化 A(T)之外,还有一个 Weyl 群作用,此外,K(T)(G/B)还接受某些类似于在 A(T)上定义的 Demazure 算子的算子{D(w)}w[unk]W。我们证明了这些 K(T)(G/B)上的结构自然来自于环 Y。通过在 A(T)-模 Psi 上“求值”为 1,我们恢复了 K(G/B)以及上述结构。我们相信,本文的许多结果在有限情况下(即 G 是 C 上的有限维半单群)也是新的。