Suppr超能文献

波浪能与潮间带生产力。

Wave energy and intertidal productivity.

机构信息

Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Panama.

出版信息

Proc Natl Acad Sci U S A. 1987 Mar;84(5):1314-8. doi: 10.1073/pnas.84.5.1314.

Abstract

In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 x 10(8) J, per m(2) in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms "harness" wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding.

摘要

在东北太平洋,最受海浪冲击的潮间带从破浪中获得的能量比从太阳获得的能量还要多。尽管冬季风暴会造成严重的死亡率,但在一些受海浪冲击的地点,每年单位面积海岸上的生物量都非常高。在华盛顿塔图什岛的受海浪冲击的地点,海棕榈(Postelsia palmaeformis)在好年景每平方米可产生超过 10 公斤的干物质,或 1.5 x 10(8)焦耳。像海棕榈这样生产力极高的生物只局限于受海浪冲击的地点。潮间带生物无法像光合作用植物那样将波浪能转化为化学能,也无法“利用”波浪能。尽管如此,波浪能还是提高了潮间带生物的生产力。在暴露的海岸上,波浪增加了驻留藻类获取营养和利用阳光的能力,增强了生产力高的生物的竞争力,并通过击退它们的敌人或阻止它们进食来保护潮间带居民。

相似文献

1
Wave energy and intertidal productivity.
Proc Natl Acad Sci U S A. 1987 Mar;84(5):1314-8. doi: 10.1073/pnas.84.5.1314.
4
Intertidal sea stars (Pisaster ochraceus) alter body shape in response to wave action.
J Exp Biol. 2013 May 1;216(Pt 9):1717-25. doi: 10.1242/jeb.078964.
7
Short-range dispersal maintains a volatile marine metapopulation: the brown alga Postelsia palmaeformis.
Ecology. 2017 Jun;98(6):1560-1573. doi: 10.1002/ecy.1798. Epub 2017 May 2.
8
ASYMMETRICAL DEVELOPMENTAL PLASTICITY IN AN INTERTIDAL SNAIL.
Evolution. 1988 Mar;42(2):322-334. doi: 10.1111/j.1558-5646.1988.tb04136.x.

引用本文的文献

3
The Diversity and Functional Capacity of Microbes Associated with Coastal Macrophytes.
mSystems. 2022 Oct 26;7(5):e0059222. doi: 10.1128/msystems.00592-22. Epub 2022 Aug 22.
4
5
Patterns of Body Shape Diversity and Evolution in Intertidal and Subtidal Lineages of Combtooth Blennies (Blenniidae).
Integr Org Biol. 2021 Mar 16;3(1):obab004. doi: 10.1093/iob/obab004. eCollection 2021.
7
Drivers of recovery and reassembly of coral reef communities.
Proc Biol Sci. 2019 Feb 27;286(1897):20182908. doi: 10.1098/rspb.2018.2908.
8
Environmental heterogeneity mediates scale-dependent declines in kelp diversity on intertidal rocky shores.
PLoS One. 2019 Mar 26;14(3):e0213191. doi: 10.1371/journal.pone.0213191. eCollection 2019.

本文引用的文献

2
Disaster, Catastrophe, and Local Persistence of the Sea Palm Postelsia palmaeformis.
Science. 1979 Aug 17;205(4407):685-7. doi: 10.1126/science.205.4407.685.
3
Calcium carbonate production, coral reef growth, and sea level change.
Science. 1976 Nov 26;194(4268):937-9. doi: 10.1126/science.194.4268.937.
4
Resource availability and plant antiherbivore defense.
Science. 1985 Nov 22;230(4728):895-9. doi: 10.1126/science.230.4728.895.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验