Dipartimento di Matematica, Università di Bari, 70125 Bari, Italy.
Proc Natl Acad Sci U S A. 1988 Mar;85(5):1330-3. doi: 10.1073/pnas.85.5.1330.
We derive two Gordan-Capelli series for the supersymmetric algebra of the tensor product of two unk-graded [unk]-vector spaces U and V, being [unk] a field of characteristic zero. These expansions yield complete decompositions of the supersymmetric algebra regarded as a pl(U)- and a pl(V)- module, where pl(U) and pl(V) are the general linear Lie superalgebras of U and V, respectively.
我们推导出了张量积为两个unk-graded [unk]-向量空间 U 和 V 的超对称代数的两个 Gordan-Capelli 级数,其中[unk]是一个特征为零的域。这些展开式给出了超对称代数作为 pl(U)和 pl(V) 模的完全分解,其中 pl(U) 和 pl(V) 分别是 U 和 V 的一般线性李超代数。