Department of Mathematics, Rutgers University, New Brunswick, NJ 08903.
Proc Natl Acad Sci U S A. 1984 May;81(10):3256-60. doi: 10.1073/pnas.81.10.3256.
We announce the construction of an irreducible graded module V for an "affine" commutative nonassociative algebra [unk]. This algebra is an "affinization" of a slight variant [unk] of the commutative nonassociative algebra B defined by Griess in his construction of the Monster sporadic group F(1). The character of V is given by the modular function J(q) = q(-1) + 0 + 196884q +.... We obtain a natural action of the Monster on V compatible with the action of [unk], thus conceptually explaining a major part of the numerical observations known as Monstrous Moonshine. Our construction starts from ideas in the theory of the basic representations of affine Lie algebras and develops further the calculus of vertex operators. In particular, the homogeneous and principal representations of the simplest affine Lie algebra A(1) ((l)) and the relation between them play an important role in our construction. As a corollary we deduce Griess's results, obtained previously by direct calculation, about the algebra structure of B and the action of F(1) on it. In this work, the Monster, a finite group, is defined and studied by means of a canonical infinite-dimensional representation.
我们宣布为一个“仿射”可交换非结合代数 [unk] 构造一个不可约的graded 模 V。这个代数是由 Griess 在他构造 Monster 离散群 F(1) 时定义的略微变体 [unk] 的可交换非结合代数 B 的“仿射化”。V 的特征由模函数 J(q) = q(-1) + 0 + 196884q +.... 给出。我们得到了 Monster 在 V 上的自然作用,与作用兼容 [unk],从而从概念上解释了被称为“怪异的月光”的大部分数值观测。我们的构造从仿射李代数基本表示理论的思想开始,并进一步发展了顶点算子的计算。特别是,最简单的仿射李代数 A(1) ((l)) 的齐次和主表示及其之间的关系在我们的构造中起着重要作用。作为推论,我们推导出了 Griess 之前通过直接计算获得的关于 B 的代数结构和 F(1) 对它的作用的结果。在这项工作中,通过一个规范的无限维表示来定义和研究有限群 Monster。