Department of Mathematics, Columbia University, New York, NY 10027.
Proc Natl Acad Sci U S A. 1989 May;86(10):3461-3. doi: 10.1073/pnas.86.10.3461.
Let M be a complete (connected) Riemannian manifold having finite volume and whose sectional curvatures lie in the interval [c(1), c(2)] with -infinity < c(1)[unk]c(2) < 0. Then any proper homotopy equivalence h:N --> M from a topological manifold N is properly homotopic to a homeomorphism, provided the dimension of M is >5. In particular, if M and N are both compact (connected) negatively curved Riemannian manifolds with isomorphic fundamental groups, then M and N are homeomorphic provided dim M [unk] 3 and 4. {If both are locally symmetric, this is a consequence of Mostow's rigidity theorem [Mostow, G. D. (1967) Publ. Inst. Haut. Etud. Sci. 34, 53-104].} When M has infinite volume we can still calculate the surgery L-groups of pi(1)M, even when dim M = 3, 4, or 5, provided M is locally symmetric. An identification of the weak homotopy type of the homeomorphism group of (finite volume) M is also made through a stable range. We have previously announced these results for the special case that c(1) = c(2) = -1.
设 M 为完备(连通)黎曼流形,其体积有限,且截面曲率位于区间[c(1), c(2)]中,其中-infinity < c(1)[unk]c(2) < 0。那么,从拓扑流形 N 到 M 的任何恰当同伦等价 h:N --> M 都是恰当同伦于同胚的,只要 M 的维数大于 5。特别地,如果 M 和 N 都是紧致(连通)负曲率黎曼流形,且基本群同构,那么只要 dim M [unk] 3 和 4,M 和 N 就是同胚的。{如果两者都是局部对称的,则这是 Mostow 刚性定理[Mostow, G. D. (1967) Publ. Inst. Haut. Etud. Sci. 34, 53-104]的推论。} 当 M 的体积无穷大时,即使 dim M = 3, 4 或 5,只要 M 是局部对称的,我们仍然可以计算 pi(1)M 的手术 L-群。通过稳定范围,我们还确定了同胚群的弱同伦类型的识别。我们之前已经宣布了这些结果,用于 c(1) = c(2) = -1 的特殊情况。