Brain C E, Chomczynski P, Downs T R, Frohman L A
Department of Internal Medicine, University of Cincinnati College of Medicine, Ohio 45267.
Endocrinology. 1991 Dec;129(6):3410-6. doi: 10.1210/endo-129-6-3410.
The dwarf (dw) mutation in rats results in 40-50% growth retardation associated with a selective reduction in pituitary somatotroph number, GH content, and GH mRNA levels and a decreased GH secretory response to GH-releasing factor (GRF). Recent studies in freshly dispersed pituitary cells have provided evidence for a defect in adenylate cyclase-linked GRF signal transduction in dw somatotrophs. To further examine this defect in a more specific cell population, we developed a somatomammotroph cell line (DP) derived from anterior pituitaries of male dw rats. A similar cell line from normal rats (Po) was used as control. We studied acute GH (4-h release) and cAMP (30-min intracellular accumulation) responses to GH secretagogues known to interact with the adenylate cyclase system. Basal GH release in both cell lines was 80-130% of the cell content, thus limiting the capacity for further GH responses. GRF (10(-8) M) produced a doubling of cAMP levels in Po and DP cells (P less than 0.01), but inconsistent effects on GH release. (Bu)2cAMP (5 x 10(-3) M) increased GH secretion by 50-100% in both groups (P less than 0.01). Cholera toxin (10(-9) M) increased GH release by 50% in both Po and DP (P less than 0.01), but the cAMP response in DP cells was only half that in Po cells (P less than 0.01). Forskolin (10(-5) M), a direct stimulator of adenylate cyclase, doubled GH release in both groups (P less than 0.01). However, cAMP generation was impaired in DP, with a maximal response to forskolin less than one third that in Po (P less than 0.01). In somatotrophs, cAMP mediates not only GRF-stimulated GH release, but also GH synthesis and mitogenesis. The impairment in maximal cAMP generation in DP cells, while not affecting acute GH release, may underlie the defect in somatotroph cell number and GH content in the dw pituitary gland.
大鼠中的侏儒(dw)突变导致生长迟缓40 - 50%,这与垂体生长激素细胞数量选择性减少、生长激素(GH)含量及GH mRNA水平降低以及GH对生长激素释放因子(GRF)的分泌反应减弱有关。最近对新鲜分离的垂体细胞的研究为dw生长激素细胞中腺苷酸环化酶相关的GRF信号转导缺陷提供了证据。为了在更特定的细胞群体中进一步研究这一缺陷,我们建立了一种源自雄性dw大鼠垂体前叶的生长催乳素细胞系(DP)。来自正常大鼠的类似细胞系(Po)用作对照。我们研究了已知与腺苷酸环化酶系统相互作用的生长激素促分泌素对生长激素(4小时释放)和环磷酸腺苷(cAMP,30分钟细胞内积累)的急性反应。两个细胞系中的基础生长激素释放量为细胞内含量的80 - 130%,因此限制了进一步的生长激素反应能力。GRF(10⁻⁸ M)使Po和DP细胞中的cAMP水平加倍(P < 0.01),但对生长激素释放的影响不一致。双丁酰环磷腺苷(Bu)₂cAMP(5×10⁻³ M)使两组中的生长激素分泌增加50 - 100%(P < 0.01)。霍乱毒素(10⁻⁹ M)使Po和DP细胞中的生长激素释放增加50%(P < 0.01),但DP细胞中的cAMP反应仅为Po细胞中的一半(P < 0.01)。福斯高林(10⁻⁵ M),一种腺苷酸环化酶的直接刺激剂,使两组中的生长激素释放量加倍(P < 0.01)。然而,DP细胞中的cAMP生成受损,对福斯高林的最大反应小于Po细胞中的三分之一(P < 0.01)。在生长激素细胞中,cAMP不仅介导GRF刺激的生长激素释放,还介导生长激素合成和有丝分裂。DP细胞中最大cAMP生成的受损,虽然不影响急性生长激素释放,但可能是dw垂体中生长激素细胞数量和生长激素含量缺陷的基础。