Suppr超能文献

M型KCNQ(Kv7)钾离子通道组装的结构决定因素。

Structural determinants of M-type KCNQ (Kv7) K+ channel assembly.

作者信息

Schwake Michael, Athanasiadu Despina, Beimgraben Christian, Blanz Judith, Beck Christian, Jentsch Thomas J, Saftig Paul, Friedrich Thomas

机构信息

Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany.

出版信息

J Neurosci. 2006 Apr 5;26(14):3757-66. doi: 10.1523/JNEUROSCI.5017-05.2006.

Abstract

The ability of KCNQ (Kv7) channels to form hetero-oligomers is of high physiological importance, because heteromers of KCNQ3 with KCNQ2 or KCNQ5 underlie the neuronal M-current, which modulates neuronal excitability. In KCNQ channels, we recently identified a C-terminal subunit interaction (si) domain that determines their subunit-specific assembly. Within this si domain, there are two motifs that comprise approximately 30 amino acid residues each and that exhibit a high probability for coiled-coil formation. Transfer of the first or the second coiled-coil (TCC) domain from KCNQ3 into the KCNQ1 scaffold resulted in chimeras KCNQ1(TCC1)Q3 and KCNQ1(TCC2)Q3, both of which coimmunoprecipitated with KCNQ2. However, only KCNQ1(TCC2)Q3 enhanced KCNQ2 currents and surface expression or exerted a strong dominant-negative effect on KCNQ2. Deletion of TCC2 within KCNQ2 yielded functional homomeric channels but prevented the current augmentation measured after coexpression of KCNQ2 and KCNQ3. In contrast, deleting TCC1 within KCNQ2 did not give functional homomeric KCNQ2 or heteromeric KCNQ2/KCNQ3 channels. Mutations that disrupted the predicted coiled-coil structure of TCC1 in KCNQ2 or KCNQ3 abolished channel activity after expressing these constructs singly or in combination, whereas helix-breaking mutations in TCC2 of KCNQ2 gave functional homomeric channels but prevented the heteromerization with KCNQ3. In contrast, KCNQ3 carrying a coiled-coil disrupting mutation in TCC2 hetero-oligomerized with KCNQ2. Our data suggest that the TCC1 domains of KCNQ2 and KCNQ3 are required to form functional homomeric as well as heteromeric channels, whereas both TCC2 domains facilitate an efficient transport of heteromeric KCNQ2/KCNQ3 channels to the plasma membrane.

摘要

KCNQ(Kv7)通道形成异源寡聚体的能力具有高度的生理重要性,因为KCNQ3与KCNQ2或KCNQ5的异源寡聚体构成了神经元M电流,该电流调节神经元兴奋性。在KCNQ通道中,我们最近鉴定出一个C末端亚基相互作用(si)结构域,它决定了它们的亚基特异性组装。在这个si结构域内,有两个基序,每个基序包含大约30个氨基酸残基,并且具有形成卷曲螺旋的高概率。将KCNQ3的第一个或第二个卷曲螺旋(TCC)结构域转移到KCNQ1支架中,产生了嵌合体KCNQ1(TCC1)Q3和KCNQ1(TCC2)Q3,它们都能与KCNQ2进行共免疫沉淀。然而,只有KCNQ1(TCC2)Q3增强了KCNQ2电流和表面表达,或者对KCNQ2发挥了强大的显性负效应。在KCNQ2中删除TCC2产生了功能性同聚体通道,但阻止了KCNQ2和KCNQ3共表达后测得的电流增强。相反,在KCNQ2中删除TCC1没有产生功能性同聚体KCNQ2或异聚体KCNQ2/KCNQ3通道。破坏KCNQ2或KCNQ3中TCC1预测的卷曲螺旋结构的突变,在单独或组合表达这些构建体后消除了通道活性,而KCNQ2的TCC2中的螺旋破坏突变产生了功能性同聚体通道,但阻止了与KCNQ3的异聚化。相反,在TCC2中携带卷曲螺旋破坏突变的KCNQ3与KCNQ2形成了异源寡聚体。我们的数据表明,KCNQ2和KCNQ3的TCC1结构域是形成功能性同聚体以及异聚体通道所必需的,而两个TCC2结构域则促进了异聚体KCNQ2/KCNQ3通道向质膜的有效转运。

相似文献

1
Structural determinants of M-type KCNQ (Kv7) K+ channel assembly.
J Neurosci. 2006 Apr 5;26(14):3757-66. doi: 10.1523/JNEUROSCI.5017-05.2006.
2
3
A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly.
EMBO Rep. 2003 Jan;4(1):76-81. doi: 10.1038/sj.embor.embor715.
4
Heteromeric Assembly of Truncated Neuronal Kv7 Channels: Implications for Neurologic Disease and Pharmacotherapy.
Mol Pharmacol. 2020 Sep;98(3):192-202. doi: 10.1124/mol.120.119644. Epub 2020 Jun 24.
5
Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by serum- and glucocorticoid-regulated kinase-1.
Am J Physiol Cell Physiol. 2008 Jul;295(1):C73-80. doi: 10.1152/ajpcell.00146.2008. Epub 2008 May 7.
6
Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine.
J Neurosci. 2005 May 18;25(20):5051-60. doi: 10.1523/JNEUROSCI.0128-05.2005.
8
Calmodulin orchestrates the heteromeric assembly and the trafficking of KCNQ2/3 (Kv7.2/3) channels in neurons.
Mol Cell Neurosci. 2014 Jan;58:40-52. doi: 10.1016/j.mcn.2013.12.005. Epub 2013 Dec 11.
9
Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by ubiquitination. Novel role for Nedd4-2.
J Biol Chem. 2007 Apr 20;282(16):12135-42. doi: 10.1074/jbc.M609385200. Epub 2007 Feb 23.
10
The Role of the Carboxyl Terminus Helix C-D Linker in Regulating KCNQ3 K+ Current Amplitudes by Controlling Channel Trafficking.
PLoS One. 2015 Dec 21;10(12):e0145367. doi: 10.1371/journal.pone.0145367. eCollection 2015.

引用本文的文献

2
Ctenophores and parahoxozoans independently evolved functionally diverse voltage-gated K+ channels.
J Gen Physiol. 2025 May 5;157(3). doi: 10.1085/jgp.202413740. Epub 2025 Mar 18.
4
G protein βγ regulation of KCNQ-encoded voltage-dependent K channels.
Front Physiol. 2024 Apr 9;15:1382904. doi: 10.3389/fphys.2024.1382904. eCollection 2024.
5
Plural molecular and cellular mechanisms of pore domain encephalopathy.
bioRxiv. 2024 Jun 26:2024.01.04.574177. doi: 10.1101/2024.01.04.574177.
7
Human de novo mutations underlie epilepsy and intellectual disability.
J Neurophysiol. 2022 Jul 1;128(1):40-61. doi: 10.1152/jn.00509.2021. Epub 2022 May 18.
8
Cell death-inducing cytotoxicity in truncated KCNQ4 variants associated with DFNA2 hearing loss.
Dis Model Mech. 2021 Nov 1;14(11). doi: 10.1242/dmm.049015. Epub 2021 Nov 26.
9
Kv7 Channels and Excitability Disorders.
Handb Exp Pharmacol. 2021;267:185-230. doi: 10.1007/164_2021_457.
10
Flexible Stoichiometry: Implications for KCNQ2- and KCNQ3-Associated Neurodevelopmental Disorders.
Dev Neurosci. 2021;43(3-4):191-200. doi: 10.1159/000515495. Epub 2021 Apr 1.

本文引用的文献

1
Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine.
J Neurosci. 2005 May 18;25(20):5051-60. doi: 10.1523/JNEUROSCI.0128-05.2005.
2
A structural requirement for processing the cardiac K+ channel KCNQ1.
J Biol Chem. 2004 Aug 6;279(32):33976-83. doi: 10.1074/jbc.M404539200. Epub 2004 May 12.
3
Functional and structural conservation of CBS domains from CLC chloride channels.
J Physiol. 2004 Jun 1;557(Pt 2):363-78. doi: 10.1113/jphysiol.2003.058453. Epub 2004 Jan 14.
5
C-terminal interaction of KCNQ2 and KCNQ3 K+ channels.
J Physiol. 2003 Apr 15;548(Pt 2):353-60. doi: 10.1113/jphysiol.2003.040980. Epub 2003 Mar 14.
6
C-terminal domains implicated in the functional surface expression of potassium channels.
EMBO J. 2003 Feb 3;22(3):395-403. doi: 10.1093/emboj/cdg035.
7
A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly.
EMBO Rep. 2003 Jan;4(1):76-81. doi: 10.1038/sj.embor.embor715.
8
KCNQ1 gain-of-function mutation in familial atrial fibrillation.
Science. 2003 Jan 10;299(5604):251-4. doi: 10.1126/science.1077771.
9
Amino-terminal determinants of U-type inactivation of voltage-gated K+ channels.
J Biol Chem. 2002 Aug 9;277(32):29045-53. doi: 10.1074/jbc.M111470200. Epub 2002 May 20.
10
Neuronal KCNQ potassium channels: physiology and role in disease.
Nat Rev Neurosci. 2000 Oct;1(1):21-30. doi: 10.1038/35036198.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验