Schwake Michael, Athanasiadu Despina, Beimgraben Christian, Blanz Judith, Beck Christian, Jentsch Thomas J, Saftig Paul, Friedrich Thomas
Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany.
J Neurosci. 2006 Apr 5;26(14):3757-66. doi: 10.1523/JNEUROSCI.5017-05.2006.
The ability of KCNQ (Kv7) channels to form hetero-oligomers is of high physiological importance, because heteromers of KCNQ3 with KCNQ2 or KCNQ5 underlie the neuronal M-current, which modulates neuronal excitability. In KCNQ channels, we recently identified a C-terminal subunit interaction (si) domain that determines their subunit-specific assembly. Within this si domain, there are two motifs that comprise approximately 30 amino acid residues each and that exhibit a high probability for coiled-coil formation. Transfer of the first or the second coiled-coil (TCC) domain from KCNQ3 into the KCNQ1 scaffold resulted in chimeras KCNQ1(TCC1)Q3 and KCNQ1(TCC2)Q3, both of which coimmunoprecipitated with KCNQ2. However, only KCNQ1(TCC2)Q3 enhanced KCNQ2 currents and surface expression or exerted a strong dominant-negative effect on KCNQ2. Deletion of TCC2 within KCNQ2 yielded functional homomeric channels but prevented the current augmentation measured after coexpression of KCNQ2 and KCNQ3. In contrast, deleting TCC1 within KCNQ2 did not give functional homomeric KCNQ2 or heteromeric KCNQ2/KCNQ3 channels. Mutations that disrupted the predicted coiled-coil structure of TCC1 in KCNQ2 or KCNQ3 abolished channel activity after expressing these constructs singly or in combination, whereas helix-breaking mutations in TCC2 of KCNQ2 gave functional homomeric channels but prevented the heteromerization with KCNQ3. In contrast, KCNQ3 carrying a coiled-coil disrupting mutation in TCC2 hetero-oligomerized with KCNQ2. Our data suggest that the TCC1 domains of KCNQ2 and KCNQ3 are required to form functional homomeric as well as heteromeric channels, whereas both TCC2 domains facilitate an efficient transport of heteromeric KCNQ2/KCNQ3 channels to the plasma membrane.
KCNQ(Kv7)通道形成异源寡聚体的能力具有高度的生理重要性,因为KCNQ3与KCNQ2或KCNQ5的异源寡聚体构成了神经元M电流,该电流调节神经元兴奋性。在KCNQ通道中,我们最近鉴定出一个C末端亚基相互作用(si)结构域,它决定了它们的亚基特异性组装。在这个si结构域内,有两个基序,每个基序包含大约30个氨基酸残基,并且具有形成卷曲螺旋的高概率。将KCNQ3的第一个或第二个卷曲螺旋(TCC)结构域转移到KCNQ1支架中,产生了嵌合体KCNQ1(TCC1)Q3和KCNQ1(TCC2)Q3,它们都能与KCNQ2进行共免疫沉淀。然而,只有KCNQ1(TCC2)Q3增强了KCNQ2电流和表面表达,或者对KCNQ2发挥了强大的显性负效应。在KCNQ2中删除TCC2产生了功能性同聚体通道,但阻止了KCNQ2和KCNQ3共表达后测得的电流增强。相反,在KCNQ2中删除TCC1没有产生功能性同聚体KCNQ2或异聚体KCNQ2/KCNQ3通道。破坏KCNQ2或KCNQ3中TCC1预测的卷曲螺旋结构的突变,在单独或组合表达这些构建体后消除了通道活性,而KCNQ2的TCC2中的螺旋破坏突变产生了功能性同聚体通道,但阻止了与KCNQ3的异聚化。相反,在TCC2中携带卷曲螺旋破坏突变的KCNQ3与KCNQ2形成了异源寡聚体。我们的数据表明,KCNQ2和KCNQ3的TCC1结构域是形成功能性同聚体以及异聚体通道所必需的,而两个TCC2结构域则促进了异聚体KCNQ2/KCNQ3通道向质膜的有效转运。