Suppr超能文献

KCNQ(Kv7)钾离子通道对抗惊厥药瑞替加滨敏感性的分子决定因素

Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine.

作者信息

Schenzer Anne, Friedrich Thomas, Pusch Michael, Saftig Paul, Jentsch Thomas J, Grötzinger Joachim, Schwake Michael

机构信息

Institute of Biochemistry, Christian-Albrechts-University Kiel, D-24098 Kiel, Germany.

出版信息

J Neurosci. 2005 May 18;25(20):5051-60. doi: 10.1523/JNEUROSCI.0128-05.2005.

Abstract

Epilepsy is caused by an electrical hyperexcitability in the CNS. Because K+ channels are critical for establishing and stabilizing the resting potential of neurons, a loss of K+ channels could support neuronal hyperexcitability. Indeed, benign familial neonatal convulsions, an autosomal dominant epilepsy of infancy, is caused by mutations in KCNQ2 or KCNQ3 K+ channel genes. Because these channels contribute to the native muscarinic-sensitive K+ current (M current) that regulates excitability of numerous types of neurons, KCNQ (Kv7) channel activators would be effective in epilepsy treatment. A compound exhibiting anticonvulsant activity in animal seizure models is retigabine. It specifically acts on the neuronally expressed KCNQ2-KCNQ5 (Kv7.2-Kv7.5) channels, whereas KCNQ1 (Kv7.1) is not affected. Using the differential sensitivity of KCNQ3 and KCNQ1 to retigabine, we constructed chimeras to identify minimal segments required for sensitivity to the drug. We identified a single tryptophan residue within the S5 segment of KCNQ3 and also KCNQ2, KCNQ4, and KCNQ5 as crucial for the effect of retigabine. Furthermore, heteromeric KCNQ channels comprising KCNQ2 and KCNQ1 transmembrane domains (attributable to transfer of assembly properties from KCNQ3 to KCNQ1) are retigabine insensitive. Transfer of the tryptophan into the KCNQ1 scaffold resulted in retigabine-sensitive heteromers, suggesting that the tryptophan is necessary in all KCNQ subunits forming a functional tetramer to confer drug sensitivity.

摘要

癫痫是由中枢神经系统中的电活动过度兴奋引起的。由于钾离子通道对于建立和稳定神经元的静息电位至关重要,钾离子通道的丧失可能会导致神经元过度兴奋。事实上,良性家族性新生儿惊厥是一种婴儿期的常染色体显性癫痫,由KCNQ2或KCNQ3钾离子通道基因突变引起。由于这些通道参与调节多种类型神经元兴奋性的内源性毒蕈碱敏感性钾电流(M电流),KCNQ(Kv7)通道激活剂在癫痫治疗中可能有效。一种在动物癫痫模型中表现出抗惊厥活性的化合物是瑞替加滨。它特异性作用于神经元表达的KCNQ2-KCNQ5(Kv7.2-Kv7.5)通道,而KCNQ1(Kv7.1)不受影响。利用KCNQ3和KCNQ1对瑞替加滨的不同敏感性,我们构建了嵌合体以确定对该药物敏感所需的最小片段。我们在KCNQ3以及KCNQ2、KCNQ4和KCNQ5的S5片段中鉴定出一个单一的色氨酸残基,它对瑞替加滨的作用至关重要。此外,由KCNQ2和KCNQ1跨膜结构域组成的异源KCNQ通道(归因于组装特性从KCNQ3转移到KCNQ1)对瑞替加滨不敏感。将色氨酸转移到KCNQ1支架中会产生对瑞替加滨敏感的异源二聚体,这表明在形成功能性四聚体的所有KCNQ亚基中,色氨酸对于赋予药物敏感性是必需的。

相似文献

1
Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine.
J Neurosci. 2005 May 18;25(20):5051-60. doi: 10.1523/JNEUROSCI.0128-05.2005.
3
Structural determinants of M-type KCNQ (Kv7) K+ channel assembly.
J Neurosci. 2006 Apr 5;26(14):3757-66. doi: 10.1523/JNEUROSCI.5017-05.2006.
4
The KCNQ2/3 selective channel opener ICA-27243 binds to a novel voltage-sensor domain site.
Neurosci Lett. 2009 Nov 13;465(2):138-42. doi: 10.1016/j.neulet.2009.08.071. Epub 2009 Sep 3.
5
Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine.
Mol Pharmacol. 2000 Aug;58(2):253-62. doi: 10.1124/mol.58.2.253.
6
Functional and behavioral signatures of Kv7 activator drug subtypes.
Epilepsia. 2020 Aug;61(8):1678-1690. doi: 10.1111/epi.16592. Epub 2020 Jul 11.
7
Bimodal effects of the Kv7 channel activator retigabine on vascular K+ currents.
Br J Pharmacol. 2008 Sep;155(1):62-72. doi: 10.1038/bjp.2008.231. Epub 2008 Jun 9.
8
The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy.
Epilepsia. 2012 Mar;53(3):412-24. doi: 10.1111/j.1528-1167.2011.03365.x. Epub 2012 Jan 5.
9
Pharmacogenetics of KCNQ channel activation in 2 potassium channelopathy mouse models of epilepsy.
Epilepsia. 2018 Feb;59(2):358-368. doi: 10.1111/epi.13978. Epub 2017 Dec 19.
10
KCNQ3 is the principal target of retigabine in CA1 and subicular excitatory neurons.
J Neurophysiol. 2021 Apr 1;125(4):1440-1449. doi: 10.1152/jn.00564.2020. Epub 2021 Mar 17.

引用本文的文献

2
Pharmacometabolomics of sulfonylureas in patients with type 2 diabetes: a cross-sectional study.
J Pharm Pharm Sci. 2024 Sep 17;27:13305. doi: 10.3389/jpps.2024.13305. eCollection 2024.
3
Lipophilic compounds restore function to neurodevelopmental-associated KCNQ3 mutations.
Commun Biol. 2024 Sep 19;7(1):1181. doi: 10.1038/s42003-024-06873-4.
4
In Silico Methods for the Discovery of Kv7.2/7.3 Channels Modulators: A Comprehensive Review.
Molecules. 2024 Jul 8;29(13):3234. doi: 10.3390/molecules29133234.
5
Carboxyl-group compounds activate voltage-gated potassium channels via a distinct mechanism.
J Gen Physiol. 2024 Jul 1;156(7). doi: 10.1085/jgp.202313516. Epub 2024 Jun 4.
6
Site and Mechanism of ML252 Inhibition of Kv7 Voltage-Gated Potassium Channels.
Function (Oxf). 2023 May 4;4(4):zqad021. doi: 10.1093/function/zqad021. eCollection 2023.
8
Behavioral and neuro-functional consequences of eliminating the KCNQ3 GABA binding site in mice.
Front Mol Neurosci. 2023 May 25;16:1192628. doi: 10.3389/fnmol.2023.1192628. eCollection 2023.
9
Overlooked KCNQ4 variants augment the risk of hearing loss.
Exp Mol Med. 2023 Apr;55(4):844-859. doi: 10.1038/s12276-023-00976-4. Epub 2023 Apr 3.
10
Functional characterization and in vitro pharmacological rescue of KCNQ2 pore mutations associated with epileptic encephalopathy.
Acta Pharmacol Sin. 2023 Aug;44(8):1589-1599. doi: 10.1038/s41401-023-01073-y. Epub 2023 Mar 17.

本文引用的文献

2
Towards a structural view of gating in potassium channels.
Nat Rev Neurosci. 2004 Dec;5(12):905-16. doi: 10.1038/nrn1559.
3
Three mechanisms underlie KCNQ2/3 heteromeric potassium M-channel potentiation.
J Neurosci. 2004 Oct 13;24(41):9146-52. doi: 10.1523/JNEUROSCI.3194-04.2004.
6
X-ray structure of a voltage-dependent K+ channel.
Nature. 2003 May 1;423(6935):33-41. doi: 10.1038/nature01580.
7
Effect of the KCNQ potassium channel opener retigabine on single KCNQ2/3 channels expressed in CHO cells.
J Physiol. 2003 May 15;549(Pt 1):57-63. doi: 10.1113/jphysiol.2003.039842. Epub 2003 Apr 17.
8
A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly.
EMBO Rep. 2003 Jan;4(1):76-81. doi: 10.1038/sj.embor.embor715.
9
KCNQ1 gain-of-function mutation in familial atrial fibrillation.
Science. 2003 Jan 10;299(5604):251-4. doi: 10.1126/science.1077771.
10
Crystal structure and mechanism of a calcium-gated potassium channel.
Nature. 2002 May 30;417(6888):515-22. doi: 10.1038/417515a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验