Suppr超能文献

在经历饱食与饥饿循环的生物反应器中rRNA和聚-β-羟基丁酸酯的动态变化

rRNA and poly-beta-hydroxybutyrate dynamics in bioreactors subjected to feast and famine cycles.

作者信息

Frigon Dominic, Muyzer Gerard, van Loosdrecht Mark, Raskin Lutgarde

机构信息

Department of Civil and Environmental Engineering, University of Michigan, 107 EWRE Bldg., 1351 Beal Ave., Ann Arbor, MI 48109-2125, USA.

出版信息

Appl Environ Microbiol. 2006 Apr;72(4):2322-30. doi: 10.1128/AEM.72.4.2322-2330.2006.

Abstract

Feast and famine cycles are common in activated sludge wastewater treatment systems, and they select for bacteria that accumulate storage compounds, such as poly-beta-hydroxybutyrate (PHB). Previous studies have shown that variations in influent substrate concentrations force bacteria to accumulate high levels of rRNA compared to the levels in bacteria grown in chemostats. Therefore, it can be hypothesized that bacteria accumulate more rRNA when they are subjected to feast and famine cycles. However, PHB-accumulating bacteria can form biomass (grow) throughout a feast and famine cycle and thus have a lower peak biomass formation rate during the cycle. Consequently, PHB-accumulating bacteria may accumulate less rRNA when they are subjected to feast and famine cycles than bacteria that are not capable of PHB accumulation. These hypotheses were tested with Wautersia eutropha H16 (wild type) and W. eutropha PHB-4 (a mutant not capable of accumulating PHB) grown in chemostat and semibatch reactors. For both strains, the cellular RNA level was higher when the organism was grown in semibatch reactors than when it was grown in chemostats, and the specific biomass formation rates during the feast phase were linearly related to the cellular RNA levels for cultures. Although the two strains exhibited maximum uptake rates when they were grown in semibatch reactors, the wild-type strain responded much more rapidly to the addition of fresh medium than the mutant responded. Furthermore, the chemostat-grown mutant culture was unable to exhibit maximum substrate uptake rates when it was subjected to pulse-wise addition of fresh medium. These data show that the ability to accumulate PHB does not prevent bacteria from accumulating high levels of rRNA when they are subjected to feast and famine cycles. Our results also demonstrate that the ability to accumulate PHB makes the bacteria more responsive to sudden increases in substrate concentrations, which explains their ecological advantage.

摘要

在活性污泥废水处理系统中, feast and famine周期很常见,它们会选择那些积累储存化合物(如聚-β-羟基丁酸酯,PHB)的细菌。先前的研究表明,与在恒化器中生长的细菌相比,进水底物浓度的变化会迫使细菌积累高水平的rRNA。因此,可以推测,当细菌经历 feast and famine周期时,它们会积累更多的rRNA。然而,积累PHB的细菌在整个 feast and famine周期中都可以形成生物量(生长),因此在该周期中具有较低的生物量峰值形成率。因此,与不能积累PHB的细菌相比,积累PHB的细菌在经历 feast and famine周期时可能积累较少的rRNA。这些假设通过在恒化器和半连续反应器中生长的真养产碱杆菌H16(野生型)和真养产碱杆菌PHB - 4(一种不能积累PHB的突变体)进行了测试。对于这两种菌株,当生物体在半连续反应器中生长时,细胞RNA水平高于在恒化器中生长时,并且在 feast阶段的比生物量形成率与培养物的细胞RNA水平呈线性相关。尽管这两种菌株在半连续反应器中生长时表现出最大摄取率,但野生型菌株对添加新鲜培养基的反应比突变体快得多。此外,当对恒化器培养的突变体培养物进行脉冲式添加新鲜培养基时,它无法表现出最大底物摄取率。这些数据表明,积累PHB的能力并不会阻止细菌在经历 feast and famine周期时积累高水平的rRNA。我们的结果还表明,积累PHB的能力使细菌对底物浓度的突然增加更敏感,这解释了它们的生态优势。

相似文献

1
rRNA and poly-beta-hydroxybutyrate dynamics in bioreactors subjected to feast and famine cycles.
Appl Environ Microbiol. 2006 Apr;72(4):2322-30. doi: 10.1128/AEM.72.4.2322-2330.2006.
3
Storage and degradation of poly-beta-hydroxybutyrate in activated sludge under aerobic conditions.
Water Res. 2001 Jun;35(9):2277-85. doi: 10.1016/s0043-1354(00)00511-x.
4
Stoichiometry and kinetics of poly-beta-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures.
Biotechnol Bioeng. 2000 Feb 20;67(4):379-89. doi: 10.1002/(sici)1097-0290(20000220)67:4<379::aid-bit1>3.0.co;2-2.
5
Dependence of poly-β-hydroxybutyrate accumulation in sludge on biomass concentration in SBRs.
Sci Total Environ. 2021 Nov 25;797:149138. doi: 10.1016/j.scitotenv.2021.149138. Epub 2021 Jul 19.
6
Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-Hydroxybutyrate) in Ralstonia eutropha H16.
Appl Environ Microbiol. 2017 Jun 16;83(13). doi: 10.1128/AEM.00755-17. Print 2017 Jul 1.
7
Influence of ammonium on the accumulation of polyhydroxybutyrate (PHB) in aerobic open mixed cultures.
J Biotechnol. 2010 May 17;147(2):73-9. doi: 10.1016/j.jbiotec.2010.02.003. Epub 2010 Feb 13.
9
Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha.
J Bacteriol. 2000 Oct;182(20):5916-8. doi: 10.1128/JB.182.20.5916-5918.2000.

引用本文的文献

1
Cellular RNA levels define heterotrophic substrate-uptake rate sub-guilds in activated sludge microbial communities.
Interface Focus. 2023 Jun 9;13(4):20220080. doi: 10.1098/rsfs.2022.0080. eCollection 2023 Aug 6.
2
Biological conversion of methane to polyhydroxyalkanoates: Current advances, challenges, and perspectives.
Environ Sci Ecotechnol. 2020 Apr 24;2:100029. doi: 10.1016/j.ese.2020.100029. eCollection 2020 Apr.
4
Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production.
Bioengineering (Basel). 2017 Jun 11;4(2):55. doi: 10.3390/bioengineering4020055.
5
Bacterial community assembly in activated sludge: mapping beta diversity across environmental variables.
Microbiologyopen. 2016 Dec;5(6):1050-1060. doi: 10.1002/mbo3.388. Epub 2016 Oct 19.
6
Extent of intracellular storage in single and dual substrate systems under pulse feeding.
Environ Sci Pollut Res Int. 2013 Mar;20(3):1225-38. doi: 10.1007/s11356-012-1291-4. Epub 2012 Nov 11.
8
Molecular insight into activated sludge producing polyhydroxyalkanoates under aerobic-anaerobic conditions.
J Ind Microbiol Biotechnol. 2008 Aug;35(8):805-14. doi: 10.1007/s10295-008-0352-7. Epub 2008 Apr 17.

本文引用的文献

1
Kinetic modeling of poly(beta-hydroxybutyrate) production and consumption by Paracoccus pantotrophus under dynamic substrate supply.
Biotechnol Bioeng. 1997 Sep 5;55(5):773-82. doi: 10.1002/(SICI)1097-0290(19970905)55:5<773::AID-BIT7>3.0.CO;2-8.
3
4
Biochemical limits to microbial growth yields: An analysis of mixed substrate utilization.
Biotechnol Bioeng. 1988 Jun 20;32(1):86-94. doi: 10.1002/bit.260320112.
5
Feast/famine growth environments and activated sludge population selection.
Biotechnol Bioeng. 1985 May;27(5):562-8. doi: 10.1002/bit.260270503.
6
Simultaneous Nitrification and Denitrification in Aerobic Chemostat Cultures of Thiosphaera pantotropha.
Appl Environ Microbiol. 1988 Nov;54(11):2812-8. doi: 10.1128/aem.54.11.2812-2818.1988.
7
Bacterial choices for the consumption of multiple resources for current and future needs.
Microb Ecol. 2005 Feb;49(2):183-97. doi: 10.1007/s00248-003-1053-4. Epub 2005 Jun 17.
9
The thiobacilli.
Bacteriol Rev. 1957 Sep;21(3):195-213. doi: 10.1128/br.21.3.195-213.1957.
10
Bacterial community composition and function in sewage treatment systems.
Curr Opin Biotechnol. 2002 Jun;13(3):218-27. doi: 10.1016/s0958-1669(02)00315-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验