Miller Kyle M, Rog Ofer, Cooper Julia Promisel
Telomere Biology Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
Nature. 2006 Apr 6;440(7085):824-8. doi: 10.1038/nature04638.
Telomere replication is achieved through the combined action of the conventional DNA replication machinery and the reverse transcriptase, telomerase. Telomere-binding proteins have crucial roles in controlling telomerase activity; however, little is known about their role in controlling semi-conservative replication, which synthesizes the bulk of telomeric DNA. Telomere repeats in the fission yeast Schizosaccharomyces pombe are bound by Taz1, a regulator of diverse telomere functions. It is generally assumed that telomere-binding proteins impede replication fork progression. Here we show that, on the contrary, Taz1 is crucial for efficient replication fork progression through the telomere. Using two-dimensional gel electrophoresis, we find that loss of Taz1 leads to stalled replication forks at telomeres and internally placed telomere sequences, regardless of whether the telomeric G-rich strand is replicated by leading- or lagging-strand synthesis. In contrast, the Taz1-interacting protein Rap1 is dispensable for efficient telomeric fork progression. Upon loss of telomerase, taz1Delta telomeres are lost precipitously, suggesting that maintenance of taz1Delta telomere repeats cannot be sustained through semi-conservative replication. As the human telomere proteins TRF1 and TRF2 are Taz1 orthologues, we predict that one or both of the human TRFs may orchestrate fork passage through human telomeres. Stalled forks at dysfunctional human telomeres are likely to accelerate the genomic instability that drives tumorigenesis.
端粒复制是通过传统DNA复制机制与逆转录酶端粒酶的联合作用来实现的。端粒结合蛋白在控制端粒酶活性方面发挥着关键作用;然而,对于它们在控制合成大部分端粒DNA的半保留复制中的作用却知之甚少。裂殖酵母粟酒裂殖酵母中的端粒重复序列由Taz1结合,Taz1是多种端粒功能的调节因子。一般认为端粒结合蛋白会阻碍复制叉的前进。在这里我们表明,恰恰相反,Taz1对于复制叉高效通过端粒至关重要。使用二维凝胶电泳,我们发现Taz1的缺失会导致端粒处和内部放置的端粒序列处的复制叉停滞,无论富含G的端粒链是通过前导链还是后随链合成进行复制。相比之下,与Taz1相互作用的蛋白Rap1对于高效的端粒叉前进是可有可无的。端粒酶缺失后,taz1Δ端粒会急剧丢失,这表明taz1Δ端粒重复序列的维持无法通过半保留复制持续下去。由于人类端粒蛋白TRF1和TRF2是Taz1的直系同源物,我们预测人类TRF1或TRF2中的一个或两个可能会协调复制叉通过人类端粒。功能失调的人类端粒处的停滞叉可能会加速驱动肿瘤发生的基因组不稳定。