Bonesi Sergio M, Manet Ilse, Freccero Mauro, Fagnoni Maurizio, Albini Angelo
CHIDECAR-CONICET, Dep. Quim. Org., Fac. Cien. Ex. Nat. Universidad de Buenos Aires, Ciudad Universidaria, 1428 Buenos Aires, Argentina.
Chemistry. 2006 Jun 14;12(18):4844-57. doi: 10.1002/chem.200501144.
The oxidation of diethyl and diphenyl sulfide photosensitized by dicyanoanthracene (DCA), N-methylquinolinium tetrafluoroborate (NMQ(+)), and triphenylpyrylium tetrafluoroborate (TPP(+)) has been explored by steady-state and laser flash photolysis studies in acetonitrile, methanol, and 1,2-dichloroethane. In the Et(2)S/DCA system sulfide-enhanced intersystem crossing leads to generation of (1)O(2), which eventually gives the sulfoxide via a persulfoxide; this mechanism plays no role with Ph(2)S, though enhanced formation of (3)DCA has been demonstrated. In all other cases an electron-transfer (ET) mechanism is involved. Electron-transfer sulfoxidation occurs with efficiency essentially independent of the sulfide structure, is subject to quenching by benzoquinone, and does not lead to Ph(2)SO cooxidation. Formation of the radical cations R(2)S(+) has been assessed by flash photolysis (medium-dependent yield, dichloroethane>>CH(3)CN>CH(3)OH) and confirmed by quenching with 1,4-dimethoxybenzene. Electron-transfer oxidations occur both when the superoxide anion is generated by the reduced sensitizer (DCA(-), NMQ()) and when this is not the case (TPP()). Although it is possible that different mechanisms operate with different ET sensitizers, a plausible unitary mechanism can be proposed. This considers that reaction between R(2)S(+) and O(2)(-) mainly involves back electron transfer, whereas sulfoxidation results primarily from the reaction of the sulfide radical cation with molecular oxygen. Calculations indeed show that the initially formed fleeting complex RS(2)(+)...O-O() adds to a sulfide molecule and gives strongly stabilized R(2)S-O()-(+)O-SR(2) via an accessible transition state. This intermediate gives the sulfoxide, probably via a radical cation chain path. This mechanism explains the larger scope of ET sulfoxidation with respect to the singlet-oxygen process.
通过在乙腈、甲醇和1,2 - 二氯乙烷中进行稳态和激光闪光光解研究,探索了由二氰基蒽(DCA)、四氟硼酸N - 甲基喹啉鎓(NMQ(+))和四氟硼酸三苯基吡喃鎓(TPP(+))光敏化的二乙硫醚和二苯硫醚的氧化反应。在Et(2)S/DCA体系中,硫化物增强的系间窜越导致单线态氧((1)O(2))的生成,其最终通过过硫化物生成亚砜;尽管已证明(3)DCA的生成有所增强,但该机制在Ph(2)S体系中不起作用。在所有其他情况下,涉及电子转移(ET)机制。电子转移硫化氧化反应的效率基本上与硫化物结构无关,会受到苯醌的猝灭作用,且不会导致Ph(2)SO的共氧化。通过闪光光解评估了自由基阳离子R(2)S(+)的生成(产率与介质有关,二氯乙烷>>CH(3)CN>CH(3)OH),并通过用1,4 - 二甲氧基苯猝灭得到证实。当超氧阴离子由还原态敏化剂(DCA(-),NMQ())生成时以及未生成时(TPP()),都会发生电子转移氧化反应。尽管不同的ET敏化剂可能存在不同的反应机制,但可以提出一个合理的统一机制。该机制认为R(2)S(+)与O(2)(-)之间的反应主要涉及反向电子转移,而硫化氧化主要源于硫化物自由基阳离子与分子氧的反应。计算结果确实表明,最初形成的短暂复合物RS(2)(+)...O - O()会加成到一个硫化物分子上,并通过一个可及的过渡态生成高度稳定的R(2)S - O()-(+)O - SR(2)。该中间体可能通过自由基阳离子链路径生成亚砜。该机制解释了电子转移硫化氧化相对于单线态氧过程具有更广泛适用范围的原因。