Yu Xiaozhong, Griffith William C, Hanspers Kristina, Dillman James F, Ong Hansel, Vredevoogd Melinda A, Faustman Elaine M
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, 98105, USA.
Toxicol Sci. 2006 Aug;92(2):560-77. doi: 10.1093/toxsci/kfj184. Epub 2006 Apr 6.
Although microarray technology has emerged as a powerful tool to explore expression levels of thousands of genes or even complete genomes after exposure to toxicants, the functional interpretation of microarray data sets still represents a time-consuming and challenging task. Gene ontology (GO) and pathway mapping have both been shown to be powerful approaches to generate a global view of biological processes and cellular components impacted by toxicants. However, current methods only allow for comparisons across two experimental settings at one particular time point. In addition, the resulting annotations are presented in extensive gene lists with minimal or limited quantitative information, data that are crucial in the application of toxicogenomic data for risk assessment. To facilitate quantitative interpretation of dose- or time-dependent genomic data, we propose to use combined average raw gene expression values (e.g., intensity or ratio) of genes associated with specific functional categories derived from the GO database. We developed an extended program (GO-Quant) to extract quantitative gene expression values and to calculate the average intensity or ratio for those significantly altered by functional gene category based on MAPPFinder results. To demonstrate its application, we applied this approach to a previously published dose- and time-dependent toxicogenomic data set (J. F. Dillman et al., 2005, Chem. Res. Toxicol. 18, 28-34). Our results indicate that the above systems approach can describe quantitatively the degree to which functional gene systems change across dose or time. Additionally, this approach provides a robust measurement to illustrate results compared to single-gene assessments and enables the user to calculate the corresponding ED(50) for each specific functional GO term, important for risk assessment.
尽管微阵列技术已成为一种强大的工具,可用于探索数千个基因甚至完整基因组在接触毒物后的表达水平,但对微阵列数据集进行功能解读仍然是一项耗时且具有挑战性的任务。基因本体论(GO)和通路映射都已被证明是生成受毒物影响的生物过程和细胞成分全局视图的有力方法。然而,目前的方法仅允许在一个特定时间点对两个实验设置进行比较。此外,所得注释以大量基因列表的形式呈现,其中定量信息极少或有限,而这些数据在将毒理基因组数据应用于风险评估中至关重要。为了便于对剂量或时间依赖性基因组数据进行定量解读,我们建议使用来自GO数据库的与特定功能类别相关的基因的组合平均原始基因表达值(例如,强度或比率)。我们开发了一个扩展程序(GO-Quant),以提取定量基因表达值,并根据MAPPFinder结果计算那些因功能基因类别而显著改变的基因的平均强度或比率。为了证明其应用,我们将此方法应用于先前发表的剂量和时间依赖性毒理基因组数据集(J.F.迪尔曼等人,2005年,《化学研究毒理学》18卷,28 - 34页)。我们的结果表明,上述系统方法可以定量描述功能基因系统在剂量或时间上的变化程度。此外,与单基因评估相比,该方法提供了一种稳健的测量方法来说明结果,并使用户能够计算每个特定功能GO术语的相应半数有效剂量(ED50),这对于风险评估很重要。