Suppr超能文献

重力对肺部气流分布和颗粒沉积影响的建模研究。

A modeling study of the effect of gravity on airflow distribution and particle deposition in the lung.

作者信息

Asgharian Bahman, Price Owen, Oberdörster Gunter

机构信息

CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709, USA.

出版信息

Inhal Toxicol. 2006 Jun;18(7):473-81. doi: 10.1080/08958370600602009.

Abstract

Inhalation of particles generated as a result of thermal degradation from fire or smoke, as may occur on spacecraft, is of major health concern to space-faring countries. Knowledge of lung airflow and particle transport under different gravity environments is required to addresses this concern by providing information on particle deposition. Gravity affects deposition of particles in the lung in two ways. First, the airflow distribution among airways is changed in different gravity environments. Second, particle losses by sedimentation are enhanced with increasing gravity. In this study, a model of airflow distribution in the lung that accounts for the influence of gravity was used for a mathematical description of particle deposition in the human lung to calculate lobar, regional, and local deposition of particles in different gravity environments. The lung geometry used in the mathematical model contained five lobes that allowed the assessment of lobar ventilation distribution and variation of particle deposition. At zero gravity, it was predicted that all lobes of the lung expanded and contracted uniformly, independent of body position. Increased gravity in the upright position increased the expansion of the upper lobes and decreased expansion of the lower lobes. Despite a slight increase in predicted deposition of ultrafine particles in the upper lobes with decreasing gravity, deposition of ultrafine particles was generally predicted to be unaffected by gravity. Increased gravity increased predicted deposition of fine and coarse particles in the tracheobronchial region, but that led to a reduction or even elimination of deposition in the alveolar region for coarse particles. The results from this study show that existing mathematical models of particle deposition at 1 G can be extended to different gravity environments by simply correcting for a gravity constant. Controlled studies in astronauts on future space missions are needed to validate these predictions.

摘要

航天器上可能出现的因火灾或烟雾导致的热降解所产生的颗粒吸入,是航天国家主要关注的健康问题。为了通过提供颗粒沉积信息来解决这一问题,需要了解不同重力环境下的肺气流和颗粒传输情况。重力以两种方式影响颗粒在肺中的沉积。首先,不同重力环境下气道间的气流分布会发生变化。其次,沉降导致的颗粒损失会随着重力增加而增强。在本研究中,一个考虑了重力影响的肺气流分布模型被用于对人体肺中颗粒沉积进行数学描述,以计算不同重力环境下颗粒在肺叶、区域和局部的沉积情况。数学模型中使用的肺几何结构包含五个肺叶,这使得能够评估肺叶通气分布以及颗粒沉积的变化。在零重力下,预计肺的所有肺叶会均匀地扩张和收缩,与身体位置无关。直立位时重力增加会使上肺叶的扩张增加,下肺叶的扩张减少。尽管随着重力降低,预计上肺叶中超细颗粒的沉积会略有增加,但一般预计超细颗粒的沉积不受重力影响。重力增加会使气管支气管区域中细颗粒和粗颗粒的预计沉积增加,但这会导致粗颗粒在肺泡区域的沉积减少甚至消除。本研究结果表明,可以通过简单地校正重力常数,将现有的1G下颗粒沉积的数学模型扩展到不同的重力环境。未来太空任务中对宇航员进行的对照研究需要验证这些预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验