Suppr超能文献

高浓度下成核聚合反应的动力学:接近和高于“超临界浓度”时淀粉样纤维的形成

The kinetics of nucleated polymerizations at high concentrations: amyloid fibril formation near and above the "supercritical concentration".

作者信息

Powers Evan T, Powers David L

机构信息

Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA.

出版信息

Biophys J. 2006 Jul 1;91(1):122-32. doi: 10.1529/biophysj.105.073767. Epub 2006 Apr 7.

Abstract

The formation of amyloid and other types of protein fibrils is thought to proceed by a nucleated polymerization mechanism. One of the most important features commonly associated with nucleated polymerizations is a strong dependence of the rate on the concentration. However, the dependence of fibril formation rates on concentration can weaken and nearly disappear as the concentration increases. Using numerical solutions to the rate equations for nucleated polymerization and analytical solutions to some limiting cases, we examine this phenomenon and show that it is caused by the concentration approaching and then exceeding the equilibrium constant for dissociation of monomers from species smaller than the nucleus, a quantity we have named the "supercritical concentration". When the concentration exceeds the supercritical concentration, the monomer, not the nucleus, is the highest-energy species on the fibril formation pathway, and the fibril formation reaction behaves initially like an irreversible polymerization. We also derive a relation that can be used in a straightforward method for determining the nucleus size and the supercritical concentration from experimental measurements of fibril formation rates.

摘要

淀粉样蛋白和其他类型蛋白质纤维的形成被认为是通过成核聚合机制进行的。通常与成核聚合相关的最重要特征之一是速率对浓度的强烈依赖性。然而,随着浓度增加,纤维形成速率对浓度的依赖性会减弱并几乎消失。通过对成核聚合速率方程的数值解以及一些极限情况的解析解,我们研究了这一现象,并表明它是由浓度接近然后超过单体从小于核的物种解离的平衡常数引起的,我们将这个量称为“超临界浓度”。当浓度超过超临界浓度时,在纤维形成途径上,单体而非核是能量最高的物种,并且纤维形成反应最初表现得像不可逆聚合。我们还推导了一个关系式,可用于一种直接的方法,从纤维形成速率的实验测量中确定核的大小和超临界浓度。

相似文献

2
Stop-and-go kinetics in amyloid fibrillation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):010901. doi: 10.1103/PhysRevE.82.010901. Epub 2010 Jul 1.
3
Early stages of amyloid fibril formation studied by liquid-state NMR: the peptide hormone glucagon.
Biophys J. 2008 Jul;95(1):366-77. doi: 10.1529/biophysj.107.122895. Epub 2008 Mar 13.
4
The mechanism of amyloid spherulite formation by bovine insulin.
Biophys J. 2005 Mar;88(3):2013-21. doi: 10.1529/biophysj.104.051896. Epub 2004 Dec 13.
5
Template-directed self-assembly and growth of insulin amyloid fibrils.
Biotechnol Bioeng. 2005 Jun 30;90(7):848-55. doi: 10.1002/bit.20486.
6
A three-stage kinetic model of amyloid fibrillation.
Biophys J. 2007 May 15;92(10):3448-58. doi: 10.1529/biophysj.106.098608. Epub 2007 Feb 26.
7
Sampling the self-assembly pathways of KFFE hexamers.
Biophys J. 2004 Dec;87(6):3648-56. doi: 10.1529/biophysj.104.047688. Epub 2004 Sep 17.
8
Scanning tunneling microscopy reveals single-molecule insights into the self-assembly of amyloid fibrils.
ACS Nano. 2012 Aug 28;6(8):6882-9. doi: 10.1021/nn301708d. Epub 2012 Jul 10.
9
Self-folding and aggregation of amyloid nanofibrils.
Nanoscale. 2011 Apr;3(4):1748-55. doi: 10.1039/c0nr00840k. Epub 2011 Feb 23.
10
Influence of dendrimer's structure on its activity against amyloid fibril formation.
Biochem Biophys Res Commun. 2006 Jun 23;345(1):21-8. doi: 10.1016/j.bbrc.2006.04.041. Epub 2006 Apr 24.

引用本文的文献

2
Inversion of supramolecular chirality by photo-enhanced secondary nucleation.
Nat Nanotechnol. 2025 Apr 11. doi: 10.1038/s41565-025-01882-8.
3
Secondary nucleation as a strategy towards hierarchically organized mesoscale topologies in supramolecular polymerization.
Nat Chem. 2025 Apr;17(4):477-492. doi: 10.1038/s41557-025-01764-5. Epub 2025 Mar 31.
4
Cooperativity in septin polymerization is tunable by ionic strength and membrane adsorption.
bioRxiv. 2025 Feb 16:2025.02.12.637902. doi: 10.1101/2025.02.12.637902.
5
Molecular definition of the endogenous Toll-like receptor signalling pathways.
Nature. 2024 Jul;631(8021):635-644. doi: 10.1038/s41586-024-07614-7. Epub 2024 Jul 3.
6
Peptide Self-Assembly into Amyloid Fibrils: Unbiased All-Atom Simulations.
J Phys Chem B. 2024 Apr 11;128(14):3320-3328. doi: 10.1021/acs.jpcb.3c07861. Epub 2024 Mar 6.
7
Simultaneously Measured Kinetics of Two Amyloid Polymorphs Using Cross Peak Specific 2D IR Spectroscopy.
J Phys Chem Lett. 2023 Dec 28;14(51):11750-11757. doi: 10.1021/acs.jpclett.3c02698. Epub 2023 Dec 20.
8
Amyloid Aggregation and Liquid-Liquid Phase Separation from the Perspective of Phase Transitions.
J Phys Chem B. 2023 Jul 20;127(28):6241-6250. doi: 10.1021/acs.jpcb.3c01426. Epub 2023 Jul 6.
9
Design, synthesis, and characterization of protein origami based on self-assembly of a brick and staple artificial protein pair.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2218428120. doi: 10.1073/pnas.2218428120. Epub 2023 Mar 9.

本文引用的文献

1
Influence of the N-terminal domain on the aggregation properties of the prion protein.
Protein Sci. 2005 Aug;14(8):2154-66. doi: 10.1110/ps.051434005.
2
Aggregation of a slow-folding mutant of a beta-clam protein proceeds through a monomeric nucleus.
Biochemistry. 2005 May 17;44(19):7266-74. doi: 10.1021/bi047404e.
3
Mechanism of prion propagation: amyloid growth occurs by monomer addition.
PLoS Biol. 2004 Oct;2(10):e321. doi: 10.1371/journal.pbio.0020321. Epub 2004 Sep 21.
4
Transthyretin aggregation under partially denaturing conditions is a downhill polymerization.
Biochemistry. 2004 Jun 15;43(23):7365-81. doi: 10.1021/bi049621l.
5
Interpretation of concentration-dependence in aggregation kinetics.
Biophys Chem. 2004 May 1;109(2):325-32. doi: 10.1016/j.bpc.2003.12.003.
6
Therapeutic approaches to protein-misfolding diseases.
Nature. 2003 Dec 18;426(6968):905-9. doi: 10.1038/nature02265.
7
Folding proteins in fatal ways.
Nature. 2003 Dec 18;426(6968):900-4. doi: 10.1038/nature02264.
8
Protein folding and misfolding.
Nature. 2003 Dec 18;426(6968):884-90. doi: 10.1038/nature02261.
9
A perspective on mechanisms of protein tetramer formation.
Biophys J. 2003 Dec;85(6):3587-99. doi: 10.1016/S0006-3495(03)74777-8.
10
Diseases of protein conformation: what do in vitro experiments tell us about in vivo diseases?
Trends Biochem Sci. 2003 Nov;28(11):585-92. doi: 10.1016/j.tibs.2003.09.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验