Bhandari Kamal, Sun Yunxiang, Tang Huayuan, Ke Pu Chu, Ding Feng
Department of Physics and Astronomy, Clemson University, South Carolina, United States.
Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
bioRxiv. 2025 May 27:2025.05.23.655849. doi: 10.1101/2025.05.23.655849.
Aberrant aggregation of proteins into amyloid fibrils is associated with numerous neurodegenerative, systemic and metabolic diseases. Amyloidogenic proteins undergo spontaneous liquid-liquid phase separation (LLPS), rapidly forming protein-rich condensates prior to fibrillization. However, the exact effects of LLPS on amyloid aggregation remain unclear as contrasting fibrillization-promotion, inhibition and even biphasic effects have been reported in the literature. In this study, we integrate LLPS-induced heterogeneity of protein concentrations into a thermodynamic-kinetic model of amyloid aggregation. We adopt the phase transition theory and introduce protein condensates as an additional protein state alongside non-interacting monomers, oligomers and fibrils. Oligomerization and fibrillization can occur both in the protein-rich condensates and the protein-poor solution. This model allows us to derive the time evolution of different states - monomers, condensates, oligomers, and fibrils - spanning a wide range of concentrations, and determine how model parameters related to LLPS, fibrillization, and oligomerization influence fibrillization kinetics. Using this global model, we resolve the seemingly contradictory effects of LLPS on fibrillization. We expect the developed thermodynamic-kinetic model of LLPS, and amyloid aggregation will help advance our understanding, modulation, and mitigation of pathological aggregation processes in amyloid diseases.
蛋白质异常聚集成淀粉样原纤维与许多神经退行性疾病、全身性疾病和代谢性疾病相关。淀粉样蛋白ogenic蛋白会经历自发的液-液相分离(LLPS),在纤维化之前迅速形成富含蛋白质的凝聚物。然而,LLPS对淀粉样蛋白聚集的确切影响仍不清楚,因为文献中报道了与之相反的纤维化促进、抑制甚至双相效应。在本研究中,我们将LLPS诱导的蛋白质浓度异质性整合到淀粉样蛋白聚集的热力学-动力学模型中。我们采用相变理论,并引入蛋白质凝聚物作为除非相互作用的单体、寡聚体和原纤维之外的另一种蛋白质状态。寡聚化和纤维化可以在富含蛋白质的凝聚物和蛋白质贫乏的溶液中发生。该模型使我们能够推导不同状态(单体、凝聚物、寡聚体和原纤维)在广泛浓度范围内的时间演化,并确定与LLPS、纤维化和寡聚化相关的模型参数如何影响纤维化动力学。使用这个全局模型,我们解决了LLPS对纤维化看似矛盾的影响。我们期望所开发的LLPS和淀粉样蛋白聚集的热力学-动力学模型将有助于推进我们对淀粉样蛋白疾病中病理聚集过程的理解、调节和缓解。