Suppr超能文献

稀蛋白质溶液中纤维形成的统计力学理论。

A statistical-mechanical theory of fibril formation in dilute protein solutions.

作者信息

van Gestel Jeroen, de Leeuw Simon W

机构信息

Physical Chemistry and Molecular Thermodynamics Group, DelftChemTech, Technische Universiteit Delft, 2628 BL Delft, The Netherlands.

出版信息

Biophys J. 2006 May 1;90(9):3134-45. doi: 10.1529/biophysj.105.076000.

Abstract

We outline a theoretical treatment that describes fibril formation in dilute protein solutions. For this, we combine a theory describing self-assembly and conformational transition with a description of the lateral association of linear chains. Our statistical-mechanical model is able to predict the mean degree of polymerization and the length of the fibrils and their precursors, as well as the weight fractions of the different aggregated species in solution. We find that there appear to exist two regimes as a function of concentration, and as a function of the free energies of protein association: one in which low-molecular weight compounds dominate and one in which the fibrils do. The transition between these regimes can be quite sharp, and becomes sharper as more filaments are allowed to associate into a single fibril. The fraction of fibrils consisting of less than the maximum allowed number of filaments turns out to be negligible, in agreement with experimental studies, where the fibril thickness is found to be practically monodisperse. In addition, we find that the description of the fibril ends has a large effect on the predicted fibril length.

摘要

我们概述了一种描述稀蛋白溶液中纤维形成的理论处理方法。为此,我们将描述自组装和构象转变的理论与线性链横向缔合的描述相结合。我们的统计力学模型能够预测聚合平均度、纤维及其前体的长度,以及溶液中不同聚集物种的重量分数。我们发现,似乎存在两种取决于浓度以及蛋白质缔合自由能的状态:一种是低分子量化合物占主导的状态,另一种是纤维占主导的状态。这些状态之间的转变可能相当急剧,并且随着更多细丝缔合形成单根纤维而变得更加急剧。与实验研究一致,由少于最大允许细丝数量组成的纤维部分可忽略不计,在实验研究中发现纤维厚度实际上是单分散的。此外,我们发现对纤维末端的描述对预测的纤维长度有很大影响。

相似文献

1
A statistical-mechanical theory of fibril formation in dilute protein solutions.
Biophys J. 2006 May 1;90(9):3134-45. doi: 10.1529/biophysj.105.076000.
3
Self-folding and aggregation of amyloid nanofibrils.
Nanoscale. 2011 Apr;3(4):1748-55. doi: 10.1039/c0nr00840k. Epub 2011 Feb 23.
4
A minimal conformational switching-dependent model for amyloid self-assembly.
Sci Rep. 2016 Feb 17;6:21103. doi: 10.1038/srep21103.
5
Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25-35 fibrils.
Biochim Biophys Acta. 2015 May;1854(5):327-32. doi: 10.1016/j.bbapap.2015.01.003. Epub 2015 Jan 17.
6
Amyloid fibril formation and other aggregate species formed by human serum albumin association.
J Phys Chem B. 2006 Oct 26;110(42):20733-6. doi: 10.1021/jp064861r.
8
10
Network-Based Classification and Modeling of Amyloid Fibrils.
J Phys Chem B. 2019 Jul 5;123(26):5452-5462. doi: 10.1021/acs.jpcb.9b03494. Epub 2019 May 29.

引用本文的文献

1
Extracellular clusterin limits the uptake of α-synuclein fibrils by murine and human astrocytes.
Glia. 2021 Mar;69(3):681-696. doi: 10.1002/glia.23920. Epub 2020 Oct 12.
2
Evolution of protein interfaces in multimers and fibrils.
J Chem Phys. 2019 Jun 14;150(22):225102. doi: 10.1063/1.5086042.
3
Assembly Mechanism for Aggregation of Amyloid Fibrils.
Int J Mol Sci. 2018 Jul 23;19(7):2141. doi: 10.3390/ijms19072141.
5
Statistical mechanical treatments of protein amyloid formation.
Int J Mol Sci. 2013 Aug 23;14(9):17420-52. doi: 10.3390/ijms140917420.
6
Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies.
PLoS One. 2013;8(1):e55375. doi: 10.1371/journal.pone.0055375. Epub 2013 Jan 31.
7
Amyloid β-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process.
ACS Chem Neurosci. 2010 Jan 20;1(1):13-8. doi: 10.1021/cn900015v. Epub 2009 Oct 9.
8
Dissecting the kinetic process of amyloid fiber formation through asymptotic analysis.
J Phys Chem B. 2012 Jun 14;116(23):6611-7. doi: 10.1021/jp205702u. Epub 2011 Dec 13.
9
What drives amyloid molecules to assemble into oligomers and fibrils?
Biophys J. 2011 Jan 19;100(2):450-8. doi: 10.1016/j.bpj.2010.11.041.

本文引用的文献

1
Structural insights into a yeast prion illuminate nucleation and strain diversity.
Nature. 2005 Jun 9;435(7043):765-72. doi: 10.1038/nature03679.
2
Insights into microtubule nucleation from the crystal structure of human gamma-tubulin.
Nature. 2005 May 26;435(7041):523-7. doi: 10.1038/nature03586.
3
Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides.
Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16180-5. doi: 10.1073/pnas.0407273101. Epub 2004 Nov 8.
4
Mechanism of prion propagation: amyloid growth occurs by monomer addition.
PLoS Biol. 2004 Oct;2(10):e321. doi: 10.1371/journal.pbio.0020321. Epub 2004 Sep 21.
5
Molecular modeling of the core of Abeta amyloid fibrils.
Proteins. 2004 Nov 1;57(2):357-64. doi: 10.1002/prot.20222.
6
Formation of amyloid fibrils from fully reduced hen egg white lysozyme.
Protein Sci. 2004 Feb;13(2):319-24. doi: 10.1110/ps.03183404. Epub 2004 Jan 10.
7
A theory of linear and helical aggregations of macromolecules.
J Mol Biol. 1962 Jan;4:10-21. doi: 10.1016/s0022-2836(62)80112-0.
8
A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy.
Biophys J. 2003 Aug;85(2):1135-44. doi: 10.1016/S0006-3495(03)74550-0.
9
Emerging ideas on the molecular basis of protein and peptide aggregation.
Curr Opin Struct Biol. 2003 Apr;13(2):146-59. doi: 10.1016/s0959-440x(03)00032-0.
10
A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR.
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16742-7. doi: 10.1073/pnas.262663499. Epub 2002 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验