Suppr超能文献

相似文献

1
Visual angle is the critical variable mediating gain-related effects in manual control.
Exp Brain Res. 2006 Sep;173(4):742-50. doi: 10.1007/s00221-006-0454-2. Epub 2006 Apr 8.
2
Coherence and interlimb force control: Effects of visual gain.
Neurosci Lett. 2018 Mar 6;668:86-91. doi: 10.1016/j.neulet.2018.01.019. Epub 2018 Jan 11.
3
Long-range correlations in motor unit discharge times at low forces are modulated by visual gain and age.
Exp Physiol. 2013 Feb;98(2):546-55. doi: 10.1113/expphysiol.2012.067975. Epub 2012 Sep 14.
4
Visual information gain and task asymmetry interact in bimanual force coordination and control.
Exp Brain Res. 2011 Aug;212(4):497-504. doi: 10.1007/s00221-011-2760-6. Epub 2011 Jun 11.
5
Greater amount of visual information exacerbates force control in older adults during constant isometric contractions.
Exp Brain Res. 2011 Sep;213(4):351-61. doi: 10.1007/s00221-011-2777-x. Epub 2011 Jul 29.
6
Visual information gain and the regulation of constant force levels.
Exp Brain Res. 2008 Jul;189(1):61-9. doi: 10.1007/s00221-008-1403-z. Epub 2008 May 10.
7
Force and time gain interact to nonlinearly scale adaptive visual-motor isometric force control.
Exp Brain Res. 2012 Aug;221(2):191-203. doi: 10.1007/s00221-012-3161-1. Epub 2012 Jul 14.
8
Visual Information Processing in Older Adults: Force Control and Motor Unit Pool Modulation.
J Mot Behav. 2024;56(3):330-338. doi: 10.1080/00222895.2023.2298888. Epub 2023 Dec 28.
9
Compensatory properties of visual information in the control of isometric force.
Percept Psychophys. 2008 Feb;70(2):306-13. doi: 10.3758/pp.70.2.306.
10
Visuomotor Correction is a Robust Contributor to Force Variability During Index Finger Abduction by Older Adults.
Front Aging Neurosci. 2015 Dec 15;7:229. doi: 10.3389/fnagi.2015.00229. eCollection 2015.

引用本文的文献

1
A single low-dimensional neural component of spinal motor neuron activity explains force generation across repetitive isometric tasks.
iScience. 2025 Sep 3;28(10):113483. doi: 10.1016/j.isci.2025.113483. eCollection 2025 Oct 17.
2
Force control deficits in rapid eye movement behavior disorder and Parkinson's disease.
Clin Neurophysiol. 2025 May 25;176:2110763. doi: 10.1016/j.clinph.2025.2110763.
3
Visual Information Processing in Older Adults: Force Control and Motor Unit Pool Modulation.
J Mot Behav. 2024;56(3):330-338. doi: 10.1080/00222895.2023.2298888. Epub 2023 Dec 28.
4
Higher visual gain contributions to bilateral motor synergies and force control.
Sci Rep. 2022 Oct 31;12(1):18271. doi: 10.1038/s41598-022-23274-x.
5
Visuomotor brain network activation and functional connectivity among individuals with autism spectrum disorder.
Hum Brain Mapp. 2022 Feb 1;43(2):844-859. doi: 10.1002/hbm.25692. Epub 2021 Oct 30.
6
Visual feedback improves bimanual force control performances at planning and execution levels.
Sci Rep. 2021 Oct 27;11(1):21149. doi: 10.1038/s41598-021-00721-9.
7
Visual and somatosensory feedback mechanisms of precision manual motor control in autism spectrum disorder.
J Neurodev Disord. 2021 Sep 8;13(1):32. doi: 10.1186/s11689-021-09381-2.
8
Modulation of sensorimotor cortical oscillations in athletes with yips.
Sci Rep. 2021 May 14;11(1):10376. doi: 10.1038/s41598-021-89947-1.
9
Older adults use a motor plan that is detrimental to endpoint control.
Sci Rep. 2021 Apr 7;11(1):7562. doi: 10.1038/s41598-021-86959-9.
10
Effects of online-bandwidth visual feedback on unilateral force control capabilities.
PLoS One. 2020 Sep 17;15(9):e0238367. doi: 10.1371/journal.pone.0238367. eCollection 2020.

本文引用的文献

1
Intermittent visuomotor processing in the human cerebellum, parietal cortex, and premotor cortex.
J Neurophysiol. 2006 Feb;95(2):922-31. doi: 10.1152/jn.00718.2005. Epub 2005 Nov 2.
2
Modifying the gain of the visual feedback affects undisturbed upright stance control.
Clin Biomech (Bristol). 2004 Oct;19(8):858-67. doi: 10.1016/j.clinbiomech.2004.04.013.
3
Fitts' Law in two dimensions with hand and head movements.
J Mot Behav. 1985 Mar;17(1):77-95. doi: 10.1080/00222895.1985.10735338.
4
Evidence for an error deadzone in compensatory tracking.
J Mot Behav. 1992 Dec;24(4):299-308. doi: 10.1080/00222895.1992.9941626.
5
Neural basis for the processes that underlie visually guided and internally guided force control in humans.
J Neurophysiol. 2003 Nov;90(5):3330-40. doi: 10.1152/jn.00394.2003. Epub 2003 Jul 2.
6
Aging and the time and frequency structure of force output variability.
J Appl Physiol (1985). 2003 Mar;94(3):903-12. doi: 10.1152/japplphysiol.00166.2002.
7
Sources of signal-dependent noise during isometric force production.
J Neurophysiol. 2002 Sep;88(3):1533-44. doi: 10.1152/jn.2002.88.3.1533.
8
Time-dependent structure in the discharge rate of human motor units.
Clin Neurophysiol. 2002 Aug;113(8):1325-38. doi: 10.1016/s1388-2457(02)00167-0.
9
The effect of gaze angle and fixation distance on the responses of neurons in V1, V2, and V4.
Neuron. 2002 Jan 3;33(1):143-9. doi: 10.1016/s0896-6273(01)00559-1.
10
Approximate entropy as a measure of system complexity.
Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2297-301. doi: 10.1073/pnas.88.6.2297.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验