Suppr超能文献

脊髓运动神经元活动的单个低维神经成分解释了重复性等长任务中的力量产生。

A single low-dimensional neural component of spinal motor neuron activity explains force generation across repetitive isometric tasks.

作者信息

Cabral Hélio V, Inglis J Greig, Pourreza Elmira, Dos Santos Milena A, Cosentino Caterina, O'Reilly David, Delis Ioannis, Negro Francesco

机构信息

Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy.

School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire, UK.

出版信息

iScience. 2025 Sep 3;28(10):113483. doi: 10.1016/j.isci.2025.113483. eCollection 2025 Oct 17.

Abstract

Low-dimensional control is thought to underlie spinal motor neuron activity, with low-frequency oscillations in common synaptic inputs serving as the primary determinant of muscle force production. Here, we used principal-component analysis and factor analysis to investigate the role of low-dimensional motor unit components in force production during repetitive isometric tasks with similar force profiles. In both individual and synergistic human muscles, the first motor unit component explained most of the variance in smoothed discharge rates and showed higher correlations with force oscillations than the second component. Additionally, the first component, but not the second, remained highly consistent across trials. A non-linear network-information framework further confirmed these findings, revealing high motor unit network density in the first component across all muscles. These results suggest that during isometric contractions, force oscillations are primarily driven by a single dominant shared synaptic input to spinal motor neuron activity.

摘要

低维控制被认为是脊髓运动神经元活动的基础,常见突触输入中的低频振荡是肌肉力量产生的主要决定因素。在这里,我们使用主成分分析和因子分析来研究低维运动单位成分在具有相似力量分布的重复性等长任务中力量产生的作用。在个体和协同的人体肌肉中,第一个运动单位成分解释了平滑放电率的大部分方差,并且与力量振荡的相关性高于第二个成分。此外,第一个成分而非第二个成分在各试验中保持高度一致。一个非线性网络信息框架进一步证实了这些发现,揭示了所有肌肉中第一个成分的高运动单位网络密度。这些结果表明,在等长收缩过程中,力量振荡主要由对脊髓运动神经元活动的单一主导共享突触输入驱动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3bd/12475579/ac15d5dd11d7/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验