Roy Soumen, Das Dibyendu
Institute of Physics, Bhubaneswar 751005, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 2):026106. doi: 10.1103/PhysRevE.73.026106. Epub 2006 Feb 6.
We study the motion of a random walker in one longitudinal and transverse dimensions with a quenched power law correlated velocity field in the longitudinal direction. The model is a modification of the Matheron-de Marsily model, with long-range velocity correlation. For a velocity correlation function, dependent on transverse coordinates as , we analytically calculate the two-time correlation function of the coordinate. We find that the motion of the coordinate is a fractional Brownian motion (FBM), with a Hurst exponent . From this and known properties of FBM, we calculate the disorder averaged persistence probability of up to time . We also find the lines in the parameter space of and along which there is marginal behavior. We present results of simulations which support our analytical calculation.
我们研究了在一个纵向和横向维度上随机游走者的运动,其纵向方向具有淬火幂律相关速度场。该模型是对具有长程速度相关性的马瑟隆 - 德马西利模型的修改。对于一个依赖于横向坐标的速度相关函数,我们通过解析计算坐标的双时相关函数。我们发现坐标的运动是分数布朗运动(FBM),具有赫斯特指数 。基于此以及 FBM 的已知性质,我们计算了直到时间 的无序平均持续概率。我们还找到了 和 参数空间中存在边缘行为的线。我们给出了支持我们解析计算的模拟结果。