Suppr超能文献

三维随机键Potts模型在大尺寸下的临界和三临界奇点。

Critical and tricritical singularities of the three-dimensional random-bond Potts model for large.

作者信息

Mercaldo M T, Anglès d'Auriac J-Ch, Iglói F

机构信息

Dipartimento di Fisica "E.R. Caianiello" and Istituto Nazionale per la Fisica della Materia, Università degli Studi di Salerno, Baronissi, Salerno I-84081, Italy.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 2):026126. doi: 10.1103/PhysRevE.73.026126. Epub 2006 Feb 23.

Abstract

We study the effect of varying strength delta of bond randomness on the phase transition of the three-dimensional Potts model for large q. The cooperative behavior of the system is determined by large correlated domains in which the spins point in the same direction. These domains have a finite extent in the disordered phase. In the ordered phase there is a percolating cluster of correlated spins. For a sufficiently large disorder delta>deltat this percolating cluster coexists with a percolating cluster of noncorrelated spins. Such a coexistence is only possible in more than two dimensions. We argue and check numerically that deltat is the tricritical disorder, which separates the first- and second-order transition regimes. The tricritical exponents are estimated as betat/vt=0.10(2) and vt=0.67(4). We claim these exponents are q independent for sufficiently large q. In the second-order transition regime the critical exponents betat/vt=0.60(2) and vt=0.73(1) are independent of the strength of disorder.

摘要

我们研究了键无序强度δ的变化对大q值三维Potts模型相变的影响。系统的协同行为由自旋指向同一方向的大相关域决定。这些域在无序相中具有有限的范围。在有序相中,存在一个相关自旋的渗流团簇。对于足够大的无序度δ>δt,这个渗流团簇与一个不相关自旋的渗流团簇共存。这种共存仅在二维以上才可能。我们通过论证和数值检验表明,δt是三临界点无序度,它将一阶和二阶转变区域分开。三临界指数估计为βt/vt = 0.10(2)和vt = 0.67(4)。我们声称,对于足够大的q,这些指数与q无关。在二阶转变区域,临界指数βt/vt = 0.60(2)和vt = 0.73(1)与无序强度无关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验