Torquato S, Stillinger F H
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 1):031106. doi: 10.1103/PhysRevE.73.031106. Epub 2006 Mar 9.
We introduce a generalization of the well-known random sequential addition (RSA) process for hard spheres in d-dimensional Euclidean space Rd. We show that all of the n-particle correlation functions of this nonequilibrium model, in a certain limit called the "ghost" RSA packing, can be obtained analytically for all allowable densities and in any dimension. This represents the first exactly solvable disordered sphere-packing model in an arbitrary dimension. The fact that the maximal density phi (infinity)=1/2d of the ghost RSA packing implies that there may be disordered sphere packings in sufficiently high d whose density exceeds Minkowski's lower bound for Bravais lattices, the dominant asymptotic term of which is 1/2d. Indeed, we report on a conjectural lower bound on the density whose asymptotic behavior is controlled by 2-(0.778,65...)d , thus providing the putative exponential improvement on Minkowski's 100-year-old bound. Our results suggest that the densest packings in sufficiently high dimensions may be disordered rather than periodic, implying the existence of disordered classical ground states for some continuous potentials.
我们引入了在(d)维欧几里得空间(\mathbb{R}^d)中硬球的著名随机顺序添加(RSA)过程的一种推广。我们表明,在一种称为“幽灵”RSA堆积的特定极限下,这个非平衡模型的所有(n)粒子关联函数,对于所有允许的密度和任意维度都可以解析得到。这代表了任意维度下第一个精确可解的无序球体堆积模型。幽灵RSA堆积的最大密度(\phi(\infty)=\frac{1}{2d})这一事实意味着,在足够高的维度(d)中可能存在无序球体堆积,其密度超过了布拉菲晶格的闵可夫斯基下界,其主导渐近项为(\frac{1}{2d})。事实上,我们报告了一个关于密度的推测下界,其渐近行为由(2^{-(0.77865\cdots)d})控制,从而在闵可夫斯基有百年历史的界上提供了假定的指数改进。我们的结果表明,在足够高的维度中,最密集的堆积可能是无序的而不是周期性的,这意味着对于某些连续势存在无序的经典基态。