Torquato S, Uche O U, Stillinger F H
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 1):061308. doi: 10.1103/PhysRevE.74.061308. Epub 2006 Dec 20.
Sphere packings in high dimensions have been the subject of recent theoretical interest. Employing numerical and theoretical methods, we investigate the structural characteristics of random sequential addition (RSA) of congruent spheres in d -dimensional Euclidean space R{d} in the infinite-time or saturation limit for the first six space dimensions (1< or =d < or =6) . Specifically, we determine the saturation density, pair correlation function, cumulative coordination number and the structure factor in each of these dimensions. We find that for 2< or =d <or =6 , the saturation density phi{s} scales with dimension as phi{s}=c{1}/2{d}+c{2}d/2{d} , where c{1}=0.202048 and c{2}=0.973872 . We also show analytically that the same density scaling is expected to persist in the high-dimensional limit, albeit with different coefficients. A byproduct of this high-dimensional analysis is a relatively sharp lower bound on the saturation density for any d given by phi{s}> or =(d+2)(1-S{0})2;{d+1} , where S{0}[0,1] is the structure factor at k=0 (i.e., infinite-wavelength number variance) in the high-dimensional limit. We demonstrate that a Palàsti-type conjecture (the saturation density in R{d} is equal to that of the one-dimensional problem raised to the d th power) cannot be true for RSA hyperspheres. We show that the structure factor S(k) must be analytic at k=0 and that RSA packings for 1< or =d< or =6 are nearly "hyperuniform." Consistent with the recent "decorrelation principle," we find that pair correlations markedly diminish as the space dimension increases up to six. We also obtain kissing (contact) number statistics for saturated RSA configurations on the surface of a d -dimensional sphere for dimensions 2< or =d< or =5 and compare to the maximal kissing numbers in these dimensions. We determine the structure factor exactly for the related "ghost" RSA packing in R{d} and demonstrate that its distance from "hyperuniformity" increases as the space dimension increases, approaching a constant asymptotic value of 12 . Our work has implications for the possible existence of disordered classical ground states for some continuous potentials in sufficiently high dimensions.
高维空间中的球体堆积是近期理论研究的热点。我们运用数值和理论方法,研究了在d维欧几里得空间R{d}中,前六个空间维度(1≤d≤6)下,全等球体随机顺序添加(RSA)在无限时间或饱和极限时的结构特征。具体而言,我们确定了每个维度下的饱和密度、对关联函数、累积配位数和结构因子。我们发现,对于2≤d≤6,饱和密度ϕ{s}与维度的关系为ϕ{s}=c{1}/2{d}+c{2}d/2{d},其中c{1}=0.202048,c{2}=0.973872。我们还通过分析表明,在高维极限下,预计相同的密度标度关系仍将成立,只是系数不同。这种高维分析的一个副产品是,对于任意d,饱和密度有一个相对精确的下限,即ϕ{s}≥(d + 2)(1 - S{0})2;{d + 1},其中S{0}∈[0,1]是高维极限下k = 0时的结构因子(即无限波长数方差)。我们证明,对于RSA超球体,帕拉斯蒂型猜想(R{d}中的饱和密度等于一维问题的饱和密度的d次幂)不成立。我们表明,结构因子S(k)在k = 0处必须是解析的,并且对于1≤d≤6的RSA堆积几乎是“超均匀的”。与最近的“去相关原理”一致,我们发现随着空间维度增加到6,对关联显著减弱。我们还获得了2≤d≤5时,d维球体表面饱和RSA构型的接吻(接触)数统计,并与这些维度下的最大接吻数进行了比较。我们精确确定了R{d}中相关“幽灵”RSA堆积的结构因子,并证明其与“超均匀性”的偏差随着空间维度的增加而增大,趋近于一个常数渐近值12。我们的工作对于某些连续势在足够高维度下无序经典基态的可能存在具有启示意义。