Suppr超能文献

通过去相关GO图结构从基因表达数据中改进功能组的评分。

Improved scoring of functional groups from gene expression data by decorrelating GO graph structure.

作者信息

Alexa Adrian, Rahnenführer Jörg, Lengauer Thomas

机构信息

Max-Planck-Institute for Informatics Stuhlsatzenhausweg 85, D-66123 Saarbrücken, Germany.

出版信息

Bioinformatics. 2006 Jul 1;22(13):1600-7. doi: 10.1093/bioinformatics/btl140. Epub 2006 Apr 10.

Abstract

MOTIVATION

The result of a typical microarray experiment is a long list of genes with corresponding expression measurements. This list is only the starting point for a meaningful biological interpretation. Modern methods identify relevant biological processes or functions from gene expression data by scoring the statistical significance of predefined functional gene groups, e.g. based on Gene Ontology (GO). We develop methods that increase the explanatory power of this approach by integrating knowledge about relationships between the GO terms into the calculation of the statistical significance.

RESULTS

We present two novel algorithms that improve GO group scoring using the underlying GO graph topology. The algorithms are evaluated on real and simulated gene expression data. We show that both methods eliminate local dependencies between GO terms and point to relevant areas in the GO graph that remain undetected with state-of-the-art algorithms for scoring functional terms. A simulation study demonstrates that the new methods exhibit a higher level of detecting relevant biological terms than competing methods.

摘要

动机

典型微阵列实验的结果是一长串带有相应表达测量值的基因。此列表仅仅是有意义的生物学解释的起点。现代方法通过对预定义功能基因组的统计显著性进行评分,从基因表达数据中识别相关的生物学过程或功能,例如基于基因本体论(GO)。我们开发了一些方法,通过将关于GO术语之间关系的知识整合到统计显著性的计算中,来提高这种方法的解释力。

结果

我们提出了两种新颖的算法,它们利用基础的GO图拓扑结构改进了GO组评分。这些算法在真实和模拟的基因表达数据上进行了评估。我们表明这两种方法都消除了GO术语之间的局部依赖性,并指向了GO图中用功能术语评分的现有算法未检测到的相关区域。一项模拟研究表明,新方法在检测相关生物学术语方面比竞争方法表现出更高的水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验