Suppr超能文献

神经/免疫基因本体论:为神经系统和免疫系统裁剪基因本体论。

The Neural/Immune Gene Ontology: clipping the Gene Ontology for neurological and immunological systems.

机构信息

Department of Microbiology and Immunology, Faculty of Medical Sciences and The National Institute of Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel.

出版信息

BMC Bioinformatics. 2010 Sep 12;11:458. doi: 10.1186/1471-2105-11-458.

Abstract

BACKGROUND

The Gene Ontology (GO) is used to describe genes and gene products from many organisms. When used for functional annotation of microarray data, GO is often slimmed by editing so that only higher level terms remain. This practice is designed to improve the summarizing of experimental results by grouping high level terms and the statistical power of GO term enrichment analysis. Here, we propose a new approach to editing the gene ontology, clipping, which is the editing of GO according to biological relevance. Creation of a GO subset by clipping is achieved by removing terms (from all hierarchal levels) if they are not functionally relevant to a given domain of interest. Terms that are located in levels higher to relevant terms are kept, thus, biologically irrelevant terms are only removed if they are not parental to terms that are relevant.

RESULTS

Using this approach, we have created the Neural-Immune Gene Ontology (NIGO) subset of GO directed for neurological and immunological systems. We tested the performance of NIGO in extracting knowledge from microarray experiments by conducting functional analysis and comparing the results to those obtained using the full GO and a generic GO slim. NIGO not only improved the statistical scores given to relevant terms, but was also able to retrieve functionally relevant terms that did not pass statistical cutoffs when using the full GO or the slim subset.

CONCLUSIONS

Our results validate the pipeline used to generate NIGO, suggesting it is indeed enriched with terms that are specific to the neural/immune domains. The results suggest that NIGO can enhance the analysis of microarray experiments involving neural and/or immune related systems. They also directly demonstrate the potential such a domain-specific GO has in generating meaningful hypotheses.

摘要

背景

GO(基因本体论)用于描述来自许多生物体的基因和基因产物。当用于微阵列数据的功能注释时,GO 通常通过编辑来简化,以便仅保留更高层次的术语。这种做法旨在通过将高级术语分组并提高 GO 术语富集分析的统计能力来总结实验结果。在这里,我们提出了一种编辑基因本体论的新方法,即剪辑,它是根据生物学相关性对 GO 进行编辑。通过剪辑创建 GO 子集是通过删除与给定感兴趣的领域没有功能相关性的术语(来自所有层次级别)来实现的。位于相关术语之上的层次的术语被保留,因此,只有当与相关术语无关的术语不是相关术语的父术语时,才会将其删除。

结果

使用这种方法,我们创建了针对神经和免疫系统的 GO 的神经免疫基因本体论(NIGO)子集。我们通过进行功能分析并将结果与使用完整的 GO 和通用的 GO 精简子集获得的结果进行比较,来测试 NIGO 从微阵列实验中提取知识的性能。NIGO 不仅提高了赋予相关术语的统计分数,而且还能够检索到在使用完整的 GO 或精简子集时未通过统计截止值的功能相关术语。

结论

我们的结果验证了用于生成 NIGO 的管道,表明它确实富含特定于神经/免疫域的术语。结果表明,NIGO 可以增强涉及神经和/或免疫相关系统的微阵列实验的分析。它们还直接证明了这种特定于领域的 GO 在生成有意义的假设方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c164/2949890/aa324689a2dc/1471-2105-11-458-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验