Suppr超能文献

Physiological and pathophysiological modulation of calcium signaling in myocardial cells.

作者信息

Endoh M

机构信息

Department of Pharmacology, Yamagata University School of Medicine, Japan.

出版信息

Jpn Circ J. 1991 Nov;55(11):1108-17. doi: 10.1253/jcj.55.1108.

Abstract

The relationship between changes in intracellular Ca2+ transients and isometric contractions has been assessed in intact cardiac muscle preparations, superficial cells of which have been microinjected with the Ca(2+)-sensitive bioluminescent protein aequorin. Regulation of myocardial contractility by physiological and pathophysiological intervention is achieved by either (1) modulation of intracellular Ca2+ mobilization, or (2) modulation of Ca2+ sensitivity of myofibrils, or both. Regulation of contractility by changes in heart rate a well established frequency-force relationship that plays an important role in the cardiac pumping function in situ is mainly achieved by mechanism (1), other mechanisms becoming involved depending on the range of frequency of stimulation. The length-dependent regulation of contractility (length-tension relationship in vitro or Frank-Starling's law, or ventricular function curve in situ) is achieved essentially by mechanism (2). Catecholamines promote mechanism (1) through activation of beta- and/or alpha-adrenoceptors, alpha-adrenoceptor stimulation being much less effective than beta-stimulation in this respect. beta-Adrenoceptor stimulation decreases, while alpha-stimulation may increase the Ca(2+)-sensitivity of contractile proteins. Subsequent to exposure of muscle preparations to Ca2+ free solution, a prominent and reversible dissociation of force of contraction from Ca2+ transients was produced when the [Ca2+]0 was gradually returned to the level of the normal Krebs-Henseleit solution [( Ca2+]0 = 2.5 mM). The aequorin-injected multicellular intact myocardial cell preparation provides an excellent experimental paradigm through which to address the physiological, pharmacological and pathophysiological modulation of E-C coupling in mammalian cardiac muscle. The subcellular mechanism involved, especially in the pathophysiological modulation of Ca2+ signaling process in myocardial cells, awaits further study.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验