Suppr超能文献

用于稳健光流处理的基于生物学动机的空间可变滤波。

Biologically motivated space-variant filtering for robust optic flow processing.

作者信息

Calow D, Krüger N, Wörgötter F, Lappe M

机构信息

Department of Psychology, Westf.- Wilhelms University, Fliednerstr., 21, 48149 Münster, Germany.

出版信息

Network. 2005 Dec;16(4):323-40. doi: 10.1080/09548980600563962.

Abstract

We describe and test a biologically motivated space-variant filtering method for decreasing the noise in optic flow fields. Our filter model adopts certain properties of a particular motion-sensitive area of the brain (area MT), which averages the incoming motion signals over receptive fields, the sizes of which increase with the distance from the center of the projection. We use heading estimation from optic flow as a criterion to evaluate the improvement of the filtered flow field. The tests are conducted on flow fields calculated with a standard flow algorithm from image sequences. We use two different sets of image sequences. The first set is recorded by a camera which is installed in a moving car. The second set is derived from a database containing three dimensional data and reflectance information from natural scenes. The latter set guarantees full control of the camera motion and ground truth about the flow field and the heading. We test the space-variant filtering method by comparing heading estimation results between space-variant filtered flow, flow filtered by averaging over domains of the visual field with constant size (constant filtering) and raw unfiltered flow. Because of noise and the aperture problem the heading estimates obtained from the raw flows are often unreliable. Estimated heading differs widely for different sub-sampled calculations. In contrast, the results obtained from the filtered flows are much less variable and therefore more consistent. Furthermore, we find a significant improvement of the results obtained from the space-variant filtered flow compared to the constant filtered flow. We suggest extensions to the space-variant filtering procedure that take other properties of motion representation in area MT into account.

摘要

我们描述并测试了一种基于生物学原理的空间可变滤波方法,用于降低光流场中的噪声。我们的滤波器模型采用了大脑中特定运动敏感区域(MT区)的某些特性,该区域会对接收域内传入的运动信号进行平均,接收域的大小会随着与投影中心距离的增加而增大。我们将光流的航向估计作为评估滤波后的流场改进效果的标准。测试是在使用标准流算法从图像序列计算得到的流场上进行的。我们使用了两组不同的图像序列。第一组是由安装在行驶汽车中的摄像头记录的。第二组来自一个包含自然场景三维数据和反射率信息的数据库。后一组能确保对摄像头运动以及流场和航向的真实情况进行完全控制。我们通过比较空间可变滤波后的流、在大小恒定的视野区域上进行平均滤波后的流(恒定滤波)以及未滤波的原始流之间的航向估计结果,来测试空间可变滤波方法。由于噪声和孔径问题,从原始流中获得的航向估计通常不可靠。对于不同的子采样计算,估计的航向差异很大。相比之下,从滤波后的流中获得的结果变化要小得多,因此更加一致。此外,我们发现与恒定滤波后的流相比,空间可变滤波后的流所获得的结果有显著改进。我们建议对空间可变滤波过程进行扩展,以考虑MT区运动表示的其他特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验