Suppr超能文献

基于渐近p值预测条件逻辑回归受影响相对对连锁分析的经验p值

Prediction of empirical p values from asymptotic p values for conditional logistic affected relative pair linkage analysis.

作者信息

Sinha Moumita, Song Yeunjoo, Elston Robert C, Olson Jane M, Goddard Katrina A B

机构信息

Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA.

出版信息

Hum Hered. 2006;61(1):45-54. doi: 10.1159/000092552. Epub 2006 Apr 7.

Abstract

OBJECTIVE

p Values are inaccurate for model-free linkage analysis using the conditional logistic model if we assume that the LOD score is asymptotically distributed as a simple mixture of chi-square distributions. When analyzing affected relative pairs alone, permuting the allele sharing of relative pairs does not lead to a useful permutation distribution. As an alternative, we have developed regression prediction models that provide more accurate p values.

METHODS

Let E(alpha) be the empirical p value, which is the proportion of statistical tests whose LOD score under the null hypothesis exceeds a threshold determined by alpha, the nominal single test significance value. We used simulated data to obtain values of E(alpha) and compared them with alpha. We also developed a regression model, based on sample size, number of covariates in the model, alpha and marker density, to derive predicted p values for both single-point and multipoint analyses. To evaluate our predictions we used another set of simulated data, comparing the Ealpha for these data with those obtained by using the prediction model, referred to as predicted p values (P(alpha)).

RESULTS

Under almost all circumstances the values of P(alpha) were closer to the E(alpha) than were the values of alpha.

CONCLUSION

The regression models suggested by our analysis provide more accurate alternative p values for model-free linkage analysis when using the conditional logistic model.

摘要

目的

如果我们假设对数优势分数(LOD score)渐近地分布为卡方分布的简单混合,那么p值对于使用条件逻辑模型的无模型连锁分析是不准确的。当单独分析患病亲属对时,对亲属对的等位基因共享进行置换不会产生有用的置换分布。作为一种替代方法,我们开发了回归预测模型,该模型能提供更准确的p值。

方法

设E(α)为经验p值,即零假设下LOD分数超过由α(名义单检验显著性值)确定的阈值的统计检验的比例。我们使用模拟数据来获取E(α)的值,并将它们与α进行比较。我们还基于样本量、模型中的协变量数量、α和标记密度开发了一个回归模型,以推导单点和多点分析的预测p值。为了评估我们的预测,我们使用了另一组模拟数据,将这些数据的Eα与使用预测模型获得的Eα进行比较,后者称为预测p值(P(α))。

结果

在几乎所有情况下,P(α)的值比α的值更接近E(α)。

结论

我们分析中提出的回归模型在使用条件逻辑模型进行无模型连锁分析时提供了更准确的替代p值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验