Suppr超能文献

福克-普朗克-克莱默斯方程处理方法在超临界伦纳德-琼斯流体中宽密度范围内扩散控制反应短时间动力学的应用。

Application of Fokker-Planck-Kramers equation treatment for short-time dynamics of diffusion-controlled reaction in supercritical Lennard-Jones fluids over a wide density range.

作者信息

Ibuki Kazuyasu, Ueno Masakatsu

机构信息

Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyo-Tanabe, Kyoto 610-0321, Japan.

出版信息

J Chem Phys. 2006 Apr 7;124(13):134506. doi: 10.1063/1.2183769.

Abstract

The validity of a Fokker-Planck-Kramers equation (FPKE) treatment of the rate of diffusion-controlled reaction at short times [K. Ibuki and M. Ueno, J. Chem. Phys. 119, 7054 (2003)] is tested in a supercritical Lennard-Jones fluid over a wide density range by comparing it with the Langevin dynamics and molecular dynamics simulations and other theories. The density n range studied is 0.323n(c)< or =n< or =2.58n(c) and the temperature 1.52T(c), where n(c) and T(c) are the critical density and temperature, respectively. For the rate of bimolecular reactions, the transition between the collision-limited and diffusion-limited regimes is expected to take place in this density range. The simulations show that the rate constant decays with time extensively at high densities, and that the magnitude of decay decreases gradually with decreasing density. The decay profiles of the rate constants obtained by the simulations are reproduced reasonably well by the FPKE treatment in the whole density range studied if a continuous velocity distribution is used in solving the FPKE approximately. If a discontinuous velocity distribution is used instead of the continuous one, the FPKE treatment leads to a rate constant much larger than the simulation results at medium and low densities. The rate constants calculated from the Smoluchowski-Collins-Kimball (SCK) theory based on the diffusion equation are somewhat smaller than the simulation results in medium and low densities when the intrinsic rate constant is chosen to adjust the steady state rate constant in the low density limit to that derived by the kinetic collision theory. The discrepancy is relatively small, so that the SCK theory provides a useful guideline for a qualitative discussion of the density effect on the rate constant.

摘要

通过将福克 - 普朗克 - 克莱默斯方程(FPKE)对短时间内扩散控制反应速率的处理方法[K. Ibuki和M. Ueno,《化学物理杂志》119,7054(2003)]与朗之万动力学、分子动力学模拟及其他理论进行比较,在超临界伦纳德 - 琼斯流体的广泛密度范围内对其有效性进行了测试。所研究的密度n范围为0.323n(c) ≤ n ≤ 2.58n(c),温度为1.52T(c),其中n(c)和T(c)分别为临界密度和温度。对于双分子反应的速率,预计在该密度范围内会发生碰撞限制和扩散限制区域之间的转变。模拟结果表明,在高密度下速率常数随时间大幅衰减,且衰减幅度随密度降低而逐渐减小。如果在近似求解FPKE时使用连续速度分布,则在整个研究的密度范围内,模拟得到的速率常数衰减曲线能被FPKE处理较好地重现。如果使用不连续速度分布而非连续速度分布,在中低密度下,FPKE处理得到的速率常数比模拟结果大得多。基于扩散方程的斯莫卢霍夫斯基 - 柯林斯 - 金博尔(SCK)理论计算得到的速率常数,当选择本征速率常数将低密度极限下的稳态速率常数调整为动力学碰撞理论推导的值时,在中低密度下比模拟结果略小。这种差异相对较小,因此SCK理论为定性讨论密度对速率常数的影响提供了有用的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验