Suppr超能文献

通过纳入辅助性主要组织相容性复合体(MHC)分子的结合数据来改进MHC结合肽预测。

Improving MHC binding peptide prediction by incorporating binding data of auxiliary MHC molecules.

作者信息

Zhu Shanfeng, Udaka Keiko, Sidney John, Sette Alessandro, Aoki-Kinoshita Kiyoko F, Mamitsuka Hiroshi

机构信息

Bioinformatics Center, Institute for Chemical Research, Kyoto University Gokasho, Uji 611-0011, Japan.

出版信息

Bioinformatics. 2006 Jul 1;22(13):1648-55. doi: 10.1093/bioinformatics/btl141. Epub 2006 Apr 13.

Abstract

MOTIVATION

Various computational methods have been proposed to tackle the problem of predicting the peptide binding ability for a specific MHC molecule. These methods are based on known binding peptide sequences. However, current available peptide databases do not have very abundant amounts of examples and are highly redundant. Existing studies show that MHC molecules can be classified into supertypes in terms of peptide-binding specificities. Therefore, we first give a method for reducing the redundancy in a given dataset based on information entropy, then present a novel approach for prediction by learning a predictive model from a dataset of binders for not only the molecule of interest but also for other MHC molecules.

RESULTS

We experimented on the HLA-A family with the binding nonamers of A1 supertype (HLA-A0101, A2601, A2902, A3002), A2 supertype (A0201, A0202, A0203, A0206, A6802), A3 supertype (A0301, A1101, A3101, A3301, A6801) and A24 supertype (A2301 and A2402), whose data were collected from six publicly available peptide databases and two private sources. The results show that our approach significantly improves the prediction accuracy of peptides that bind a specific HLA molecule when we combine binding data of HLA molecules in the same supertype. Our approach can thus be used to help find new binders for MHC molecules.

摘要

动机

已经提出了各种计算方法来解决预测特定MHC分子的肽结合能力的问题。这些方法基于已知的结合肽序列。然而,当前可用的肽数据库没有非常丰富的示例,并且存在高度冗余。现有研究表明,MHC分子可以根据肽结合特异性分为不同的超型。因此,我们首先给出一种基于信息熵减少给定数据集中冗余的方法,然后提出一种新的预测方法,即从不仅针对感兴趣的分子而且针对其他MHC分子的结合剂数据集中学习预测模型。

结果

我们对HLA - A家族进行了实验,使用A1超型(HLA - A0101、A2601、A2902、A3002)、A2超型(A0201、A0202、A0203、A0206、A6802)、A3超型(A0301、A1101、A3101、A3301、A6801)和A24超型(A2301和A2402)的结合九肽,其数据来自六个公开可用的肽数据库和两个私人来源。结果表明,当我们结合同一超型中HLA分子的结合数据时,我们的方法显著提高了与特定HLA分子结合的肽的预测准确性。因此,我们的方法可用于帮助寻找MHC分子的新结合剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验