Suppr超能文献

三角对称线性弹性张量的谱分解;任意点群对称限制的分类。

Spectral decomposition of the linear elastic tensor for trigonal symmetry; classification of symmetry restrictions for arbitrary point groups.

作者信息

Grimmer Hans

机构信息

Laboratory for Development and Methods, Condensed Matter Research with Neutrons and Muons, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland.

出版信息

Acta Crystallogr A. 2006 May;62(Pt 3):168-73. doi: 10.1107/S0108767306005800. Epub 2006 Apr 14.

Abstract

The linear compliance tensor for trigonal symmetry has four different eigenvalues, two of which have multiplicity 1, the others multiplicity 2. They and the corresponding eigenvectors have been calculated in terms of the seven parameters of the corresponding Voigt matrix. Necessary and sufficient conditions have been derived for these components to guarantee positive eigenvalues and thus a positive strain energy. The hierarchy of restrictions on the linear elastic tensors that follow from Neumann's principle for arbitrary point groups in three dimensions has been established for the standard choice of the Cartesian coordinate system, as well as in coordinate-independent form.

摘要

具有三角对称性的线性柔顺张量有四个不同的本征值,其中两个本征值的重数为1,另外两个本征值的重数为2。它们以及相应的本征向量已根据相应Voigt矩阵的七个参数计算得出。已经推导出这些分量保证正本征值从而保证正应变能的充要条件。对于笛卡尔坐标系的标准选择以及与坐标无关的形式,已经建立了三维中任意点群遵循诺伊曼原理的线性弹性张量的限制层次结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验