Louis Germaine Buck, Dukic Vanja, Heagerty Patrick J, Louis Thomas A, Lynch Coutney D, Ryan Louise M, Schisterman Enrique F, Trumble Ann
Division of Epidemiology, Statistics and Prevention Research, National Institute of Child Health and Human Development, 6100 Executive Blvd., Room 7B03, Rockville, MD 20852, USA.
Stat Methods Med Res. 2006 Apr;15(2):103-26. doi: 10.1191/0962280206sm434oa.
Women tend to repeat reproductive outcomes, with past history of an adverse outcome being associated with an approximate two-fold increase in subsequent risk. These observations support the need for statistical designs and analyses that address this clustering. Failure to do so may mask effects, result in inaccurate variance estimators, produce biased or inefficient estimates of exposure effects. We review and evaluate basic analytic approaches for analysing reproductive outcomes, including ignoring reproductive history, treating it as a covariate or avoiding the clustering problem by analysing only one pregnancy per woman, and contrast these to more modern approaches such as generalized estimating equations with robust standard errors and mixed models with various correlation structures. We illustrate the issues by analysing a sample from the Collaborative Perinatal Project dataset, demonstrating how the statistical model impacts summary statistics and inferences when assessing etiologic determinants of birth weight.
女性往往会重复生育结果,过去有不良生育结果的经历会使后续风险增加约两倍。这些观察结果表明,需要采用能够处理这种聚集性的统计设计和分析方法。若不这样做,可能会掩盖效应,导致方差估计不准确,产生有偏差或低效的暴露效应估计值。我们回顾并评估了分析生育结果的基本分析方法,包括忽略生育史、将其作为协变量处理或通过仅分析每位女性的一次妊娠来避免聚集性问题,并将这些方法与更现代的方法进行对比,如具有稳健标准误的广义估计方程和具有各种相关结构的混合模型。我们通过分析协作围产期项目数据集的一个样本来说明这些问题,展示了在评估出生体重的病因决定因素时统计模型如何影响汇总统计量和推断。