Suppr超能文献

毛细管电泳中的温度分布与散热

Temperature profiles and heat dissipation in capillary electrophoresis.

作者信息

Evenhuis Christopher J, Guijt Rosanne M, Macka Miroslav, Marriott Philip J, Haddad Paul R

机构信息

Australian Centre for Research on Separation Science (ACROSS), School of Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Tasmania, Australia.

出版信息

Anal Chem. 2006 Apr 15;78(8):2684-93. doi: 10.1021/ac052075x.

Abstract

While temperature control is usually employed in capillary electrophoresis (CE) to aid heat dissipation and provide acceptable precision, internal electrolyte temperatures are almost never measured. In principle, this limits the accuracy, repeatability, and method robustness. This work presents a fundamental study that combines the development of new equations characterizing temperature profiles in CE with a new method of temperature determination. New equations were derived from first principles relating the mean, axial, and inner wall electrolyte temperatures (T(Mean), T(Axis), T(Wall)). T(Mean) was shown to occur at a distance 1/ radical3 times the internal radius of the capillary from the center of the capillary and to be a weighted average of (2/3)T(Axis) and (1/3)T(Wall). Conductance (G) and electroosmotic mobility (mu(EOF)) can be used to determine T(Mean) and T(Wall), respectively. Extrapolation of curves of mu(EOF) versus power per unit length (P/L) at different temperatures was used to calibrate the variation of mu(EOF) with temperature (T), free from Joule heating effects. mu(EOF) increased at 2.22%/ degrees C. The experimentally determined temperatures using mu(EOF) agreed to within 0.2 degrees C with those determined using G. The accuracy of G measurements was confirmed independently by measuring the electrical conductivity (kappa) of the bulk electrolyte over a range of temperatures and by calculating the variation of G with T from the Debye-Hückel-Onsager equation. T(Mean) was found to be up to 20 degrees C higher than the external temperature under typical conditions using active air-cooling and a 74.0-microm-internal diameter (di) fused-silica capillary. A combination of experimentally determined and calculated temperatures enables a complete temperature profile for a fused-silica capillary to be drawn and the thickness of the stationary air layer to be determined. As an example, at P/L = 1.00 Wm(-1), the determined radial temperature difference across the electrolyte was 0.14 degrees C; the temperature difference across the fused-silica wall was 0.17 degrees C, across the poly(imide) coating was 0.13 degrees C, and across the stationary air layer was 2.33 degrees C.

摘要

虽然在毛细管电泳(CE)中通常采用温度控制来辅助散热并提供可接受的精度,但内部电解质温度几乎从未被测量过。原则上,这限制了准确性、重复性和方法的稳健性。这项工作提出了一项基础研究,该研究将表征CE中温度分布的新方程的开发与一种新的温度测定方法相结合。新方程是从与平均、轴向和内壁电解质温度(T(Mean)、T(Axis)、T(Wall))相关的第一原理推导出来的。结果表明,T(Mean)出现在距毛细管中心1/√3倍毛细管内径的距离处,并且是(2/3)T(Axis)和(1/3)T(Wall)的加权平均值。电导率(G)和电渗迁移率(μ(EOF))可分别用于确定T(Mean)和T(Wall)。通过外推不同温度下μ(EOF)与单位长度功率(P/L)的曲线,用于校准μ(EOF)随温度(T)的变化,不受焦耳热效应的影响。μ(EOF)以2.22%/℃的速率增加。使用μ(EOF)实验测定的温度与使用G测定的温度在0.2℃范围内一致。通过在一系列温度下测量本体电解质的电导率(κ)并根据德拜 - 休克尔 - 昂萨格方程计算G随T的变化,独立地证实了G测量的准确性。在使用主动风冷和内径为74.0微米的熔融石英毛细管的典型条件下,发现T(Mean)比外部温度高20℃。实验测定温度和计算温度的结合使得能够绘制出熔融石英毛细管的完整温度分布,并确定静止空气层的厚度。例如,在P/L = 1.00 Wm⁻¹时,测定的整个电解质的径向温差为0.14℃;穿过熔融石英壁的温差为0.17℃,穿过聚酰亚胺涂层的温差为0.13℃,穿过静止空气层的温差为2.33℃。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验