Wolyniak Christopher J, Sacks Gavin L, Metzger Sara K, Brenna J Thomas
Division of Nutritional Sciences, Savage Hall, Cornell University, Ithaca, New York 14853, USA.
Anal Chem. 2006 Apr 15;78(8):2752-7. doi: 10.1021/ac0522198.
Intramolecular carbon isotope ratios reflect the source of a compound and the reaction conditions prevailing during synthesis and degradation. We report here a method for determination of relative (Deltadelta13C) and absolute (delta13C) intramolecular isotope ratios using the volatile lactic acid analogue propylene glycol as a model compound, measured by on-line gas chromatography-pyrolysis coupled to GC-combustion-isotope ratio mass spectrometry. Pyrolytic fragmentation of about one-third of the analyte mass produces optimal fragments for isotopic analysis, from which relative isotope ratios (Deltadelta13C) are calculated according to guidelines presented previously. Calibration to obtain absolute isotope ratios is achieved by quantifying isotope fractionation during pyrolysis with an average fractionation factor, alpha, and evaluated by considering extremes in isotopic fractionation behavior. The method is demonstrated by calculating ranges of absolute intramolecular isotope ratios in four samples of propylene glycol. Relative and absolute isotope ratios were calculated with average precisions of SD(Deltadelta13C) <0.84 per thousand and SD(delta13C) <3.0 per thousand, respectively. The various fractionation scenarios produce an average delta(13)C range of 2 per thousand for each position in each sample. Relative isotope ratios revealed all four samples originated from unique sources, with samples A, B, and D only distinguishable at the position-specific level. Regardless of pyrolysis fractionation distribution, absolute isotope ratios showed a consistent pattern for all samples, with delta13C(3) > delta13C(2) > delta13C(1). The validity of the method was determined by examining the difference in relative isotope ratios calculated through two independent methods: Deltadelta13C calculated directly using previous methods and Deltadelta13C extracted from absolute isotope ratios. Deviation between the two Deltadelta13C values for all positions averaged 0.1-0.2 per thousand, with the smallest deviation obtained assuming equal fractionation across all fragment positions. This approach applies generally to all compounds analyzed by pyrolytic PSIA.
分子内碳同位素比率反映了化合物的来源以及合成和降解过程中盛行的反应条件。我们在此报告一种使用挥发性乳酸类似物丙二醇作为模型化合物来测定相对(δδ¹³C)和绝对(δ¹³C)分子内同位素比率的方法,该方法通过在线气相色谱 - 热解与气相色谱 - 燃烧 - 同位素比率质谱联用进行测量。约三分之一分析物质量的热解碎片化产生用于同位素分析的最佳碎片,根据先前提出的指导方针从中计算相对同位素比率(δδ¹³C)。通过用平均分馏因子α量化热解过程中的同位素分馏来实现获得绝对同位素比率的校准,并通过考虑同位素分馏行为的极端情况进行评估。通过计算四个丙二醇样品中绝对分子内同位素比率的范围来证明该方法。相对和绝对同位素比率的计算平均精度分别为SD(δδ¹³C)<0.84‰和SD(δ¹³C)<3.0‰。各种分馏情况在每个样品的每个位置产生平均δ(¹³C)范围为2‰。相对同位素比率表明所有四个样品源自独特的来源,样品A、B和D仅在位置特异性水平上可区分。无论热解分馏分布如何,所有样品的绝对同位素比率都呈现出一致的模式,即δ¹³C(₃)>δ¹³C(₂)>δ¹³C(₁)。该方法的有效性通过检查通过两种独立方法计算的相对同位素比率的差异来确定:直接使用先前方法计算的δδ¹³C和从绝对同位素比率中提取的δδ¹³C。所有位置的两个δδ¹³C值之间的偏差平均为0.1 - 0.2‰,假设所有碎片位置的分馏相等时获得的偏差最小。这种方法普遍适用于通过热解PSIA分析的所有化合物。