Feldkamp Udo, Schroeder Hendrik, Niemeyer Christof M
Universität Dortmund, Fachbereich Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany.
J Biomol Struct Dyn. 2006 Jun;23(6):657-66. doi: 10.1080/07391102.2006.10507090.
Due to the exceptional molecular recognition properties of nucleic acids, the computational design of DNA sequence motifs is of paramount interest for a wide variety of applications, ranging from DNA-based nanotechnology and DNA computing to the broad field of DNA microarray technologies. These applications rely on the specificity of Watson-Crick base-pairing, and thus, are highly sensitive to non-specific interactions and the formation of any undesired secondary structures, which contradict an efficient intermolecular hybridization. Here we report on the in silico design and in vitro evaluation of single-stranded DNA (ssDNA) carrier strands for the directional DNA-based positioning of streptavidin (STV) conjugates covalently tagged with short ssDNA oligonucleotides. Each such carrier strand consists of four hybridization sites complementary to the conjugate DNA strands. The high and homogeneous hybridization efficiency measured in vitro by microarray hybridization assays confirms the quality of our in silico sequence design method. Hybridization efficiency of DNA-STV-conjugates depends on the position of the hybridization site in the carrier sequence, where the positions nearest to and farthest from the microarray surface proved to be most favorable.
由于核酸具有独特的分子识别特性,DNA序列基序的计算设计对于从基于DNA的纳米技术、DNA计算到DNA微阵列技术广泛领域的各种应用至关重要。这些应用依赖于沃森-克里克碱基配对的特异性,因此,对非特异性相互作用以及任何不期望的二级结构的形成高度敏感,而这些会与有效的分子间杂交相矛盾。在此,我们报告了用于定向DNA定位链霉亲和素(STV)缀合物的单链DNA(ssDNA)载体链的计算机设计和体外评估,该链霉亲和素缀合物共价标记有短ssDNA寡核苷酸。每条这样的载体链由四个与缀合DNA链互补的杂交位点组成。通过微阵列杂交测定法在体外测得的高且均匀的杂交效率证实了我们计算机序列设计方法的质量。DNA-STV缀合物的杂交效率取决于杂交位点在载体序列中的位置,其中最接近和最远离微阵列表面的位置被证明是最有利的。